The LC875164A/48A/32A microcontroller is 8-bit single chip microcontroller with the following on-chip functional blocks:
- CPU: Operable at a minimum bus cycle time of 100ns
- 64K/48K/32K bytes ROM
- 1024 byte RAM
- two high performance 16 bit timer/counters (can be divided into 8 bit units)
- two 8 bit timers with prescalers
- timer for use as date/time clock
- two synchronous serial I/O ports (with automatic block transmit/receive function)
- one asynchronous/synchronous serial I/O port
- 12-bit PWM × 2
- 8-channel × 8-bit AD converter
- high speed 8-bit parallel interface
- 19-sour ce 10-vec tored interrupt system
All of the above functions are fabricated on a single chip.
Features
(1) Read Only Memory
- 65536 × 8 bits (LC875164A)
- 49151 × 8 bits (LC875148A)
- 32512 × 8 bits (LC875132A)
Ver.1.03
O3098
91400 RM (IM) HK / SY No.6715-1/25
LC875164A/48A/32A
(2) Bus Cycle Time
- 100ns (10MHz)
Note: The bus cycle time indicates ROM read time.
(3) Minimum Instruction Cycle Time : 300ns (10MHz)
(4) Ports
- Input/output ports
Each bit data direction programmable 59 (P1n,P2n,P3n,P70 to P73,P8n,PAn,PBn,PCn,S2Pn)
Nibble data direction programmable 8 (P0n)
- Input ports 2 (XT1,XT2)
- PWM Output po rts 2 (PWM0,PWM1)
- Oscillator pins 2 (CF1,CF2)
- Reset pin 1 (
RES)
- Power supply 6 (VSS1 to 3,VDD1 to 3)
(5) Timers
- Timer0: 16 bit timer/counter with capture register
Mode 0: 2 channel 8 bit timer with programmable 8 bit prescaler and 8 bit capture register
Mode 1: 8 bit timer with 8 bit programmable prescaler and 8 bit capture register + 8 bit counter with 8 bit
capture register
Mode 2: 16 bit timer with 8 bit programmable prescaler and 16 bit capture register
Mode 3: 16 bit counter with 16 bit capture register
- Timer1: PWM/16 b it timer/counter (with togg le output)
Mode 0: 8 bit timer (with toggle output) + 8 bit timer counter (with toggle output)
Mode 1: 2 channel 8 bit PWM
Mode 2 : 1 6 bit timer/counter (wit h toggle outp ut)
Mode 3: 16 bit timer (with toggle output) Lower order 8 bits can be used as PWM output.
- Timer4: 8-bit timer with 6-bit prescaler
- Timer5: 8-bit timer with 6-bit prescaler
- Base timer
1. The clock signal can be selected from any of the following: sub-clock (32.768kHz crystal oscillator), system
clock, and prescaler output for timer 0.
2. Interrupts can be selected to occur at one of five different times.
(6) SIO
- SIO0: 8 bit synchronous serial interface
1. LSB first/MSB first function available
2. Internal 8-bit baud-rate generator (maximum transmit clock period 4/3 T
3. Continuous automatic data communications (1 - 256 bits)
- SIO1: 8 bit asynchronous/synchronous serial interface
Mode 0: Synchronous 8 bit serial IO (2-wire or 3-wire, transmit clock 2 - 512 T
Mode 1: Asynchronous serial IO (half duplex, 8 data bits, 1 stop bit, baud rate 8 - 2048 T
Mode 2: Bus mode 1 (start bit, 8 data bits, transmit clock 2 - 512 T
Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)
- SIO2: 8 bit synchronous serial interface
1. LSB-first
2. Built in 8-bit baud-rate generator (Maximum clock period 4/3 T
3. Continuous automatic data communication (1 - 32 bytes)
(7) AD converter
- 8-bits × 8-channels
(8) PWM
- 2 channel synchronous variable 12 bit PWM
(9) Parallel interface
RD , WR , CS0 - CS2 Outputs (reversible polarity)
- RS,
- read/write possible in 1 T
CYC
CYC
CYC
)
CYC
)
CYC
CYC
)
)
)
No.6715-2/25
LC875164A/48A/32A
(10) Remote control receiver circuit (connected to P73/INT3/T0IN terminal)
- Noise rejection function (noise rejection filter time constant can selected from 1/32/128 T
(11) Watchdog timer
- The watchdog timer period set by external RC.
- Watchdog timer can be set to produce interrupt, system reset
(12) Interrupts
- 19-source, 10-vectored interrupts:
1. Three level (low, high and highest) multiple interrupts are supported. During interrupt handling, an equal or
lower level interrupt request is refused.
2. If interrupt requests to two or more vector addresses occur at once, the higher level interrupt takes precedence.
In the case of equal priority levels, the vector with the lowest address takes precedence.
No. Vector Selectable Level Interrupt signal
1 00003H X or L INT0
2 0000BH X or L INT1
3 00013H H or L INT2/T0L/INT4
4 0001BH H or L INT3/INT5/Base timer
5 00023H H or L T0H
6 0002BH H or L T1L/T1H
7 00033H H or L SIO0
8 0003BH H or L SIO1/ SIO2
9 00043H H or L ADC
10 0004BH H or L Port 0/T4/T5/PWM0, 1
• Priority Lev el : X > H > L
• For equal priority levels, vector with lowest address takes precedence.
(13) Subroutine stack levels
- 512 levels max. Stack is located in RAM
(14) Multiplication and division
- 16 bit × 8 bit (executed in 5 cycles)
- 24 bit × 16 bit (12 cycles )
- 16 bit ÷ 8 bit (8 cycles)
- 24 bit ÷ 16 bit (12 cycles)
(15) Oscillation circuits
- On-chip RC oscillation circuit used for system clock
- On-chip CF oscillation circuit used for system clock
- On-chip Crystal oscillation circuit used for system clock and time-base clock
(16) Standby function
- HALT mode
HALT mode is used to reduce power consumption. Program execution is stopped. Peripheral circuits still operate.
1. Oscillation circuits are not stopped automatically
2. Release on system reset
- HOLD mode
HOLD mode is used to reduce the power dissipation. Both program execution and peripheral circuits are stopped.
1. CF, RC and crystal oscillation circuits stop automatically
2. Release occurs on any of the following conditions
•input to the reset pin goes low
•a specified level is input to at least one of INT0, INT1, INT2, INT4, INT5
•an interrupt condition arises at port 0
CYC
)
No.6715-3/25
LC875164A/48A/32A
- X’tal HOLD mode
X’tal HOLD mode is used to reduce power consumption. Program execution is stopped. All peripheral circuits
except the base timer are stopped.
1. CF and RC oscillation circuits stop automatically
2. Crystal oscillator is maintained in its state at HOLD mode inception.
3. Release occurs on any of the following conditions
•input to the reset pin goes low
•a specified level is input to at least one of INT0, INT1, INT2, INT4, INT5
4. Serial Input/Output Characteristics at Ta=-30°C to +70°C, VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Cycle t
pulse width
SCK
SCKL
t
SCKLA
t
(1)
(1)
(1)
SCK0(P12),
SI2P2
Refer to figure 6 2.5 - 6.0
SCKH
t
(1)
pulse width
SCKHA
t
(1)
Input clock
Cycle t
SCK
(2)
SCK1(P15) Refer to figure 6 2.5 - 6.0
Low level
SCKL
t
(2) 1
pulse width
High level
SCKH
t
(2)
pulse width
Serial clock
Cycle t
Low level
pulse width
SCK
SCKL
t
(3)
(3)
SCK0(P12),
SI2P2
SI2P3
SCKLA
t
(2)
•Use pull- up resistor
(1kΩ) when output
is open drain.
•Refer to figure 6
SCK0(P12)
SIO0
SI2P2, SI2P3
SIO2
High level
pulse width
Output clock
SCKHA
t
(3)
(2)
1/2
SCK0(P12)
SIO0
SI2P2, SI2P3
SCKH
t
SIO2
Cycle t
Low level
SCK
(4)
SCKL
t
SCK1(P15) •CMOS output option
•Refer to figure 6
(4) 1/2
pulse width
High level
SCKH
t
(4)
pulse width
time
Data hold
time
Serial input
tsDI
thDI
SB0(P11),
SB1(P14),
SI2P1
SI0
SI1
•Data set-up to
SI0CLK
•Refer to figure 6
Output delay
time
Serial output
tdD0 SO0(P10),
SO1(P13),
SB0(O11),
SB1(P14),
SI2P0,
SI2P1
•Data set-up to
SI0CLK
•When port is open
drain: Time delay
from SI0CLK traili ng
edge to the SO data
change.
•Refer to figure 6
Ratings
VDD[V] min. typ. max.
2
1 Low level
1
1 High level
3(SIO0)
2
1
2.5 - 6.0
4/3
1/2
3/4
1
2
7/4
2.5 - 6.0
2 t
1/2
4.5 - 6.0 0.03 Data set-up
2.5 - 6.0
4.5 - 6.0 0.03
2.5 - 6.0
4.5 - 6.0
2.5 - 6.0
1/3tCYC
+0.05
1/3tCYC
+0.05
unit
CYC
t
tSCK
CYC
tSCK
µ
s
No.6715-15/25
LC875164A/48A/32A
5. Parallel Input/Output Characteristics at Ta=-30°C to +70°C, VSS1=VSS2=VSS3=0V
Note: Port A terminals used as RS,
WR, RD
and CS should be set to CMOS format.
Please refer to figures 8 and 9 for parallel output timing waveforms.
Parameter Symbol Pins Conditions
Write cycle, Read
cycle
Address set-up
time
Address hold time
RS set-up tie
CS
set-up time
RS
hold time
CS
hold time
WR
’H’ pulse width
WR
’L’ pulse width
tC(1) 2.5 - 6.0 1 tCYC
tsA(1)
tsA(2)
thA(1)
thA(2)
tsRS(1)
tsRS(2)
tsRS(3)
tsCS(1)
tsCS(2)
thRS(1)
thRS(2)
thRS(3)
thCS(1)
thCS(2)
tWRH(1)
tWRH(2)
tWRL(1)
tWRL(2)
WR (PA3), PB0-PB7
•
(PA4), PC0-PC7
•
RD
RD (PA4), PC0-PC7
RD (PA4), PC0 -PC7 From change of RD
(PA3), PC0-PC7 From change of
WR
(PA3), RS(PA5),
WR
(PAX)
CS
(PA4), RS(PA5)
RD
(PA4), RS(PA5)
RD
RD (PA4), CS(PAX) From c hange in CS
WR(PA3),
(PAX)
CS
(PA3), RS(PA5) From change in WR
WR
RD (PA4), RS(PA5),
CS(PAX)
RD (PA4), RS(PA5),
(PAX)
CS
(PA4), RS(PA5) From change in RD
RD
(PA3), RS(PA5) From change in WR
WR
(PA3)
WR
(PA3)
WR
(PA3)
WR
(PA3)
WR
From address set-up
until control signal
changes
until address change
until address change
From change of RS,
until change in
CS
WR
from change of RS
until change in
until change in
From change in
until change in
until change in RS
From change in
until change in RS,
CS
until change in
until change in
2.5 - 6.0 1/6tCYC
2.5 - 6.0 2/3tCYC
2.5 - 6.0 1/6tCYC
2.5 - 6.0 1/3tCYC
WR
RD
RD
CS
WR
RD
CS
CS
Ratings
VDD[V] min. typ. max.
2.5 - 6.0 1/3tCYC
2.5 - 6.0 2/3tCYC
2.5 - 6.0 1/6tCYC
2.5 - 6.0 5 ns
2.5 - 6.0 1/6tCYC
2.5 - 6.0 1/6tCYC
2.5 - 6.0 1/3tCYC
2.5 - 6.0 1/3tCYC
2.5 - 6.0 2/3tCYC
2.5 - 6.0 0 ns
2.5 - 6.0 1/6tCYC
2.5 - 6.0 0 ns
2.5 - 6.0 1/6tCYC
2.5 - 6.0 0 ns
-30ns
-30ns
-15ns
-15ns
-15ns
-15ns
-15ns
-5ns
-5ns
-5ns
-5ns
tCYC
tCYC
1/6
tCYC
2/3
tCYC
1/6
tCYC
1/3
tCYC
(Continued)
unit
tCYC
& ns
tCYC
& ns
& ns
& ns
tCYC
& ns
No.6715-16/25
LC875164A/48A/32A
Parameter Symbol Pins Conditions
RD
’H’ pulse width
RD
’L’ pulse width
Data write
permission delay
Input data
set-up time
Input data
hold time
Output data
set-up time
Output data
set-up time
hold time
tRDH(1)
tRDH(2)
tRDL(1)
tRDL(2)
tdDT(1)
tdDT(2)
tsDTR(1)
thDTR(1)
tsDTW(1)
tsDTW(2)
thDTW(1) 2.5 - 6.0 0 Output data
thDTW(2)
(PA4)
RD
(PA4)
RD
RD (PA4)
RD (PA4)
(PA4), PB0-PB7
RD
(PA4), PB0-PB7
RD
RD (PA4), PB0-PB7
(PA4), PB0-PB7 From RD leading
RD
(PA4), PB0-PB7
RD
(PA4), PB0-PB7
RD
RD (PA4), PB0-PB7 From
2.5 - 6.0 1/6tCYC
2.5 - 6.0 1/3tCYC
2.5 - 6.0 1/3tCYC
2.5 - 6.0 1/2tCYC
Time for permission,
from
RD
edge until input data
set-up
(Note 1)
From input data set-
up to
RD
edge.
(Note 2)
edge until input data
hold
From output data set-
up until
leading
edge
edge until output data
hold
WR
WR
leading
leading
leading
Ratings
VDD[V] min. typ. max.
-5ns
-5ns
-5ns
-5ns
2.5 - 6.0 1/6tCYC
2.5 - 6.0 1/3tCYC
2.5 - 6.0 40 ns
2.5 - 6.0 0 ns
2.5 - 6.0 1/3tCYC
-30ns
2.5 - 6.0 1/3tCYC
-30ns
2.5 - 6.0 0
Note 1 : Time until incorrect data of Low is disappeared.
Note 2 : Incorrect data of Low is not output in the period between tRDL(1) - tdDT(1).
6. Pulse input Conditions at T a=-30°C to +70°C, VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
High/low level
pulse width
tPIH(1)
tPIL(1)
INT0(P70),
INT1(P71),
INT2(P72)
INT4(P20-P23)
•Interrupt accept able
•Events to timer 0
and 1 can be input.
INT5(P24-P27)
tPIH(2)
tPIL(2)
INT3(P73)
(The noise
rejection clock
•Interrupt accept able
•Events to timer 0
can be input.
select to 1/1.)
tPIH(3)
tPIL(3)
INT3(P73)
(The noise
rejection clock
•Interrupt accept able
•Events to timer 0
can be input.
select to 1/32.)
tPIH(4)
tPIL(4)
INT3(P73)
(The noise
rejection clock
•Interrupt accept able
•Events to timer 0
can be input.
select to 1/128.)
tPIL(5)
RES
Reset acceptable
Ratings
VDD[V] min. typ. max.
2.5 - 6.0 1
2.5 - 6.0 2
2.5 - 6.0 64
2.5 - 6.0 256
2.5 - 6.0 200
1/6
tCYC
1/3
tCYC
1/3
tCYC
1/2
tCYC
-15ns
-15ns
unit
tCYC
& ns
tCYC
& ns
ns
unit
CYC
t
µ
s
No.6715-17/25
LC875164A/48A/32A
7. AD Converter Characteristics at Ta=-30°C to +70°C, VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Resolution
Absolute
N 3.0 - 6.0 8 bit
ET (Note 2) 3.0 - 6.0 ±1.5 LSB
AN0(P80)
- AN7(P 87)
Ratings
VDD[V] min. typ. max.
unit
precision
Conversion
time
Analog input
TCAD
AD conversion time
CYC
=32
t
×
3.0 - 6.0
(ADCR2=0) (Note 3)
AD conversion time
CYC
t
=64
×
3.0 - 6.0 15.10
(ADCR2=1) (Note 3)
VAIN 3.0 - 6.0 VSS VDD V
15.10
(tCYC=
0.588µs)
(tCYC=
0.294µs)
97.92
97.92
(tCYC=
3.06µs)
(tCYC=
1.53µs)
s
µ
voltage range
Analog port
input current
IAINH VAIN=VDD 3.0 - 6.0 1
IAINL
VAIN=VSS 3.0 - 6.0 -1
A
µ
(Note 2) Absolute precision not including quantizing error (±1/2 LSB).
(Note 3) Conversion time means time from executing AD conversion instruction to loading complete digital value to register.
8. Current Dissipation Characteristics at Ta=-30°C to +70°C, VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Current flow
during basic
operation
(Note 4)
IDDOP(1) •FmCF=10MHz for
VDD
Ceramic resonator
oscillation
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: CF
oscillation
•Internal RC oscillation
stopped.
IDDOP(2) 4.5 - 6.0 7 12
IDDOP(3)
•FmCF=5MHz for
Ceramic resonator
oscillation
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: CF
oscillation
•Internal RC oscillation
stopped.
IDDOP(4) 4.5 - 6.0 1 3.0
IDDOP(5)
•FmCF=0Hz
(oscillation stops)
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: Internal
RC oscillation
IDDOP(6) 4.5 - 6.0 40 80
•FmCF=0Hz
(oscillation stops)
•FsX’tal=32.768kHz for
crystal oscillation
IDDOP(7)
•System clock: X’tal
oscillation
•Internal RC oscillation
stopped.
(Continued)
Ratings
VDD[V] min. typ. max.
4.5 - 6.0 16 29
2.5 - 4.5 3 8
2.5 - 4.5 0.5 2
2.5 - 4.5 15 46
unit
mA
A
µ
No.6715-18/25
LC875164A/48A/32A
Parameter Symbol Pins Conditions
Current flow:
HALT mode
(Note 4)
HOLD mode
(Note 4)
Date/time
clock HOLD
mode
IDDHALT(1) •HALT mode
IDDHALT(2) 4.5 - 6.0 3 5
IDDHALT(3)
IDDHALT(4) 4.5 - 6.0 500 1500
IDDHALT(5)
IDDHALT(6) 4.5 - 6.0 25 70
IDDHALT(7)
IDDHOLD(1) 4.5 - 6.0 0.01 30 Current flow:
IDDHOLD(2)
IDDHOLD(2) VDD1 Date/time clock HOLD
VDD
•FmCF=10MHz for
ceramic resonator
oscillation
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: CF
oscillation
•Internal RC oscillation
stopped.
•HALT mode
•FmCF=5MHz for
Ceramic resonator
oscillation
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: CF
oscillation
•Internal RC oscillation
stopped.
•HALT mode
•FmCF=0Hz
(oscillation stops)
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: Internal
RC oscillation
•HALT mode
•FmCF=0Hz
(oscillation stops)
•FsX’tal=32.768kHz for
crystal oscillation
•System clock: X’tal
oscillation
•Internal RC oscillation
stopped.
VDD1 HOLD mode
mode
•CF1=VDD or open
circuit (when using
external clock)
•FmX’tal=32.768kHz for
crystal oscillation
Ratings
VDD[V] min. typ. max.
4.5 - 6.0 6 13
2.5 - 4.5 1.2 3
2.5 - 4.5 300 1000
2.5 - 4.5 8 30
2.5 - 4.5 0.01 30
4.5 - 6.0 45 100 Current flo w:
2.5 - 4.5 6 36
(Note 4) The currents of output transistors and pull-up MOS transistors are ignored.
unit
mA
A
µ
A
µ
A
µ
No.6715-19/25
LC875164A/48A/32A
Main system clock osci llation circuit characteristics
The characteristics in the table bellow is based on the following conditions:
1. Use the standard evaluation board SANYO has provided.
2. Use the peripheral parts with indicated value externally.
3. The peripheral parts value is a recommended value of oscillator manufacturer.
Table 1. Main system clock oscillation circuit characteristics using ceramic resonator
Frequency Manufacturer Oscillator
10MHz
5MHz
4MHz
Murata
Kyocera KBR-10.0M 33pF 33pF
Murata
Murata
Kyocera KBR-4.0MSA 33pF 33pF
CSA10.0MTZ 33pF 33pF
CST10.0MTW (30pF) (30pF)
CSA5.00MG 33pF 33pF
CST5.00MGW (30pF) (30pF)
CSA4.00MG 33pF 33pF
CST4.00MGW (30pF) (30pF)
Circuit Parameters Oscillation stabilizing time
C1 C2 Rd1
Operating
supply voltage
range
4.5 - 6.0V 0.05ms 0.50ms
0Ω
4.5 - 6.0V 0.05ms 0.50ms Built in C1,C2
0Ω
4.5 - 6.0V 0.05ms 0.50ms
0Ω
4.5 - 6.0V 0.05ms 0.50ms
0Ω
4.5 - 6.0V 0.05ms 0.50ms Built in C1,C2
0Ω
4.5 - 6.0V 0.05ms 0.50ms
0Ω
4.5 - 6.0V 0.05ms 0.50ms Built in C1,C2
0Ω
4.5 - 6.0V 0.05ms 0.50ms
0Ω
typ max
Notes
*The oscillation stabilizing time is a period until the oscillation becomes stable after VDD becomes higher than minimum
The characteristics in the table bellow is based on the following conditions:
1. Use the standard evaluation board SANYO has provided.
2. Use the peripheral parts with indicated value externally.
3. The peripheral parts value is a recommended value of oscillator manufacturer.
Table 2. Subsystem clock oscillation circu it characteristics using cry s tal oscillator
Frequency Manufacturer Oscillator
32.768kHz Seiko EPSON C-002Rx 12pF 15pF OPEN
Circuit Parameters Oscillation stabilizing time
C3 C4 Rf Rd2
300kΩ
Operating supply
voltage range
4.5 - 6.0V 1.0S 3.0S
typ max
Notes
*The oscillation stabilizing time is a period until the oscillation becomes stable after executing the instruction which starts the
sub-clock oscillation or after releasing the HOLD mode. (Refer to Figure4)
(Notes) •Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close
to the oscillation pins as possible with the shortest possible pattern length.