The LC86E7248 is a CMOS 8-bit single chip microcontroller with UVEPROM for the LC867200 series. This
microcontroller has the function and the pin description of the LC867200 series mask ROM version, and 48K-byte EPROM.
The program data is rewritable. It is suitable to develop the program.
Features
(1) Option switching by EPROM data
The option function of the LC867200 series can be specified by the EPROM data.
LC86E7248 can be checked the functions of the trial pieces using the mass production board.
(2) Internal EPROM capacity : 49408 bytes
(3) Internal RAM capacity : 1152 bytes
Used EPROM or RAM capacity are equal ROM or RAM capacity of mask ROM version which applies LC86E7248.
(4) Operating supply voltage : 4.5V to 6.0V
(5) Instruction cycle time : 1µs to 366µs
(6) Operating temperature : +10°C to +40°C
(7) The pin compatible with the LC867200 series mask ROM devices
(8) Applicable mask ROM version : LC867248/40/32/24
(9) Factory shipment : QFC100S (with window)
Ver.1.02
80196
91400 RM (IM) SK No.6749-1/19
Page 2
LC86E7248
Notice for use
At using, take notice of the followings.
(1) A point of difference LC86E7248 and LC867200 series
Item LC86E7248 LC867248/40/32/24
Operation after reset
releasing
Operating supply
voltage range (VDD)
Operating temperature
range (Topr)
Power dessipat ion Refer to ‘electrical ch aracteristics’ on the semiconductor news.
The option is specified until 3ms after
going to a ‘H’ level to the reset
terminal by degrees. The program is
executed from 00H of the program
counter.
4.5V to 6.0V 2.5V to 6.0V
+10°C to +40°C -30°C to +70°C
LC86E7248 uses 256 bytes tha t is addr essed on 0F F00H t o FFFF H in the pro gram memory as the option configur ation d a ta
area. This option configuration cannot execute all options which LC867200 series have. Next tables show the options
that correspond and not correspond to LC86E7248.
• A kind of the option corresponding of the LC86E7248
A kind of option Pins, Circuits Contents of the option
Input/output form of
input/output ports
Pull-up MOS Tr. of
input port
Port 0
Port 1
*1
Port 3
*1
Ports 70, 71, 72, 73
*1
1. N-channel open drain output
2. CMOS output *1
1. Pull-up MOS Tr.
2. No Pull-up MOS Tr. *2
1. Input : Programmable pull-up MOS Tr.
2. Input : Programmable pull-up MOS Tr.
Output : CMOS
1. Input : No Programmable pull-up MOS Tr.
2. Input : Programmable pull-up MOS Tr.
Output : CMOS
1. No Pull-up MOS Tr.
2. Pull-up MOS Tr.
*1) Specified in a bit.
*2) Specified in nibble unit. Pull-up MOS Tr. is not provided in N-channel open drain output port.
The port operation related the option is different at reset. Refer to the next table.
The program is executed from 00H of
the program counter i mmediately after
going to a ‘H’ level to the reset
terminal.
Output : N-channel open drain
Output : N-channel open drain
No.6749-2/19
Page 3
LC86E7248
(1) Option
The option data is created by the option specified program “SU86K.EXE”. The created option data is linked to the
program area by linkage loader “L86K.EXE” .
(2) ROM space
LC86E7248 and LC8672 00 series use 256 bytes that is addressed on 0FF00H to 0FFFFH in the program memory as the
option specified data area. These program memory capacity are 49152 bytes that is addressed on 0000H to 0BFFFH.
Programming data for PROM of the LC86E7248 is required.
Debugged evaluation file (EVA file) must be converted to an INTEL-HE X formatted file (HEX file) with file converter
program, EVA2HEX.EXE. The HEX file is used as the programming data for the LC86P6548.
(2) How to program for the EPROM
The LC86E7248 can be programmed by EPROM programmer with attachment ; W86EP7248Q
• “27512 (Vpp=12.5V) Intel high speed pro gramming” mode available. Th e addre ss must be set to “0 to 0FFFFH ” and a
jumper (DASEC) must be set to ‘OFF’ at programming.
(3) How to use the data security function
“Data security” is the disabled function to read the data of the EPROM.
The following is the process in order to execute the data security.
1. Set ‘ON’ the jumper of attachment.
2. Program again. Then EPROM programmer displays the error. The error means normally activity of the data
security. It is not a trouble of the EPROM programmer or the LSI.
Notes
• Data security is not executed when the data of all address have ‘FFH’ at the sequence 2 above.
• The programming by a sequential operation “BLANK=>PROGRAM=>VERIFY” cannot be executed data security at the
sequence 2 above.
• Set to ‘OFF’ the jumper after executing the data security.
(4) How to eliminate
The programming data can be erased by using the EPROM eraser.
(5) Shielding
The UVEPROM (ultraviolet erasable programmable ROM) is in it. Put the seal on the window in use.
• Pull-up resistor :
Provided/Not provided
(specified in nibble units)
• Output form (P00 – P07) :
CMOS/N-channel open drain
(specified in a bit)
• Output form :
CMOS/N-channel open drain
(specified in a bit)
• Output form :
CMOS/N-channel open drain
(specified in a bit)
Pull-up resistor :
Provided/Not provided
(specified in a bit)
(P70, P71, P72, P73)
, P75 don’t have the pull-up
*
P74
resistor option.
vector
- -
-
Data line
D0 to D7
-
Power for
programming
PROM control
signals
DASEC (*2)
OE
CE
(*3)
(*4)
No.6749-7/19
Page 8
LC86E7248
Pin name I/O Function description Option PROM mode
Port A
(S0/PA0 –
S7/PA7)
Port B
(S8/PB0 –
S15/PB7)
Port C
(S16/PC0 –
S23/PC7)
Port D
(S24/PD0 –
S31/PD7)
Port E
(S32/PE0 –
S39/PE7)
Port F
(S40/PF0 –
S47/PF7)
Port L
(COM0/PL0
–
COM3/PL3)
V1/PL4 –
V3/PL6
RES
I Reset pin - -
XT1/
P74
XT2/P75 O
CF1 I Input pin for ceramic resonator
CF2 O Output pin for ceramic resonator
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Segment output terminal for LCD display
• Can be used as a general input/output
port
I/O • Common output terminal for LCD display
• Can be used as a general input port
I • Bias power terminal for LCD drive
• Can be used as a general input port
I • Input pin for 32.768kHz crystal
oscillation
In case of non use, connect to VDD.
• Other func tion
A general input port
• Output pin for 32.768kHz crystal
oscillation
In case of non use, should be left
unconnected
(I)
• Other func tion
A general input port P75
oscillation
oscillation
P74
- Address input
A0 to A7
- Address input
A8 to A13
- PROM control
signal input
• TA (*5)
Address input
• A14, A15
- -
- -
- -
- -
- -
- -
- -
- -
- -
* All of port options can be specified in a bit unit except the pull-up resistor of port 0.
[Notes] • The VDD1, VDD2 and VDD3 terminals must be shorted electrically each other.
• The VSS1, VSS2 and VSS3 terminals must be shorted electrically each other.
*1 Connect like the following figure to reduce noise into a VDD terminals.
*2 Memory select input for data security
*3 Output enable input
*4 Chip enable input
*5 TA ! PROM control signal input
Power
Supply
LSI
VDD1
VDD2
VDD3
VSS1 VSS2 VSS3
No.6749-8/19
Page 9
LC86E7248
1. Absolute Maximum Ratings at Ta=25°C, VSS=VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Supply voltage VDDMAX VDD1, VDD2
VDD3
LCD display
voltage
Input voltage VI •Ports 71, 72, 73
Input/output
voltage
High
level
output
current
Low
level
output
current
Maximum power
dissipation
Operating
temperature
range
Storage
temperature
range
IOAH(4) Ports S26 to S47 Total all pins -25
IOPL(1) Ports 0, 1, 3 At each pi ns 20
IOPL(2) Ports A,B,C,D,E,F At each pins 20
IOPL(3) Port 70 At each pins 15
Σ
IOAL(1) Ports 0, 1, 32, 33,
34, 35
Σ
IOAL(2) Ports 30, 31 Total all pins 20
Σ
IOAL(3) Ports S0 to S25 Total all pins 39
Σ
IOAL(4) Ports S26 to S47 Total all pins 33
Σ
IOAL(5) Port 70 Total all pins 10
Pdmax QFC100S Ta=+10 to+40°C 515
Topr +10 +40
Tstg -55 +125
, 75
74
VDD1=VDD2=
VDD3
VDD1=VDD2=
VDD3
-0.3 VDD+0.3
-0.3 VDD+0.3
•CMOS output
•At each pins
Total all pins -38
Total all pins 50
Ratings
[V]
min. typ. max.
VDD
-0.3 +7.0
-0.3 VDD
-4
unit
V
mA
mW
°
C
No.6749-9/19
Page 10
LC86E7248
2. Recommended Operating Range at Ta=+10°C to +40°C, VSS =0V
Parameter Symbol Pins Conditions
Operating
supply voltage
range
Hold voltage VHD VDD1, VDD2, VDD3 RAMs and the registers
•Pull-up MOS Tr.
OFF. VIN=VDD
(incl uding the off leak current of the
output Tr.)
VIN=VDD 4.5-6.0 1
VIN=VDD
•Output disable
•Pull-up MOS Tr.
OFF. VIN=VSS
(incl uding the off leak current of the
output Tr.)
VIN=VSS 4.5-6.0 -1
VIN=VSS
IOH=-1.0mA 4.5-6.0 VDD-1 Output high
IOH=-1.0mA 4.5-6.0 VDD-1
IOL=1.6mA 4.5-6.0 0.4
IOL=1.6mA 4.5-6.0 0.4
IOL=1.6mA 4.5-6.0 0.4
Ratings
VDD[V] min. typ. max.
4.5-6.0 1
4.5-6.0 1
4.5-6.0 -1
4.5-6.0 -1
Continue.
unit
µ
A
V
No.6749-11/19
Page 12
LC86E7248
Parameter Symbol Pins Conditions
VODLS S0 to S47 •Deferen ce voltage
regulation
VODLC COM0 to COM3 •Deferen ce voltage
RLCD(1) Resistance at a
resistor
RLCD(2) •Resistance at a
Pull-up MOS
Tr. resistor
Hysteresis
voltage
Pin capacitance CP All pins •f=1MHz
Rpu •Ports 0, 1, 3
•Ports A,B,C,D,E,F
•Ports 70, 71, 72, 73
VHIS •Port 1
•Ports 70, 71, 72, 73
•
RES
to ideal value
•VLCD, 2/3VLCD,
1/3VLCD
to ideal value
•VLCD, 2/3VLCD,
1/2VLCD, 1/3VLCD
ladder resisto r
ladder resistor
•1/2R mode
VOH=0.9VDD 4.5-6.0 15 40 70
Output disable 4.5-6.0 0.1VDD V
•Unmeasurement
terminals for the
input are set to
VSS level.
•Ta=25°C
Ratings
VDD[V] min. typ. max.
4.5-6.0 0 ±0.2 LCD output
4.5-6.0 0 ±0.2
4.5-6.0 60 LCD ladder
4.5-6.0 30
4.5-6.0 10 pF
4. Serial Input / Output Characteristics at Ta=+10°C to +40°C, VSS=VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Cycle tCKCY(1) 2
Low Level
pulse width
High Level
Input clock
pulse width
Cycle tCKCY(2) 2
Serial clock
Serial input
Serial output
Low Level
pulse width
High Level
Output clock
pulse width
Data set up ti me
Data hold time
Output delay time
(Serial clock is
external clock)
Output delay time
(Serial clock is
internal clock)
tCKL(1) 1
tCKH(1)
tCKL(2) 1/2
tCKH(2)
tICK 4.5-6.0 0.1
tCKI
tCKO(1) 4.5-6.0 7/12tCYC
tCKO(2)
SCK0,
SCK1
SCK0,
SCK1
•SI0,SI1
•SB0,SB1
•SO0, SO1
•SB0, SB1
Refer to figure 5. 4.5-6.0
•Use pull-up
resistor (1kΩ)
when open drain
output.
•Refer to figure 5.
•Data set-up to
SCK0, 1
•Data hold from
SCK0, 1
•Refer to figure 5.
•Use pull-up
resistor (1kΩ)
when open drain
output.
•Data hold from
SCK0, 1
•Refer to figure 5.
Ratings
VDD[V] min. typ. max.
1
4.5-6.0
1/2
4.5-6.0 0.1
4.5-6.0 1/3tCYC
tCKCY
tCKCY
+0.2
+0.2
unit
V
kΩ
unit
tCYC
µ
s
No.6749-12/19
Page 13
LC86E7248
5. Pulse Input Conditions at Ta=+10°C to +40°C, VSS=VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
High/low level
pulse width
tPIH(1)
tPIL(1)
tPIH(2)
tPIL(2)
tPIH(3)
tPIL(3)
tPIH(4)
tPIL(4)
tPIL(5)
•INT0, INT1
•INT2/T0IN
INT3/T0IN
(The noise rejection
clock is selected to 1/1.)
INT3/T0IN
(The noise rejection
clock is selected to
1/16.)
INT3/T0IN
(The noise rejection
clock is selected to
1/64.)
RES
Reset acceptable 4.5-6.0 200
•Interrupt accept able
•Timer0-countable
•Interrupt accept able
•Timer0-countable
•Interrupt accept able
•Timer0-countable
•Interrupt accept able
•Timer0-countable
Ratings
VDD[V] min. typ. max.
4.5-6.0 1
4.5-6.0 2
4.5-6.0 32
4.5-6.0 128
unit
tCYC
µ
s
6. AD Converter Characteristics at Ta=+10°C to + 40°C, VSS=VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Resolution NAD 4.5-6.0 8 bit
Absolute precision
(Note 2)
Conversion time tCAD
Analog input
voltage range
input current
ETAD 4.5-6.0 ±1.5 LSB
AD conversion time = 16
×
tCYC
(ADCR2=0)
(Note 3)
AD conversion time = 32
×
tCYC
(ADCR2=1)
(Note 3)
VAIN 4.5-6.0 VSS VDD V
IAINH VAIN=VDD 4.5-6.0 1 Analog port
IAINL
AN0 - AN7
VAIN=VSS 4.5-6.0 -1
Ratings
VDD[V] min. typ. max.
4.5-6.0
15.68
(tCYC=
0.98µs)
31.36
(tCYC=
0.98µs)
65.28
(tCYC=
4.08µs)
130.56
(tCYC=
4.08µs)
unit
µ
s
µ
A
(Note 2) Absolute precision excepts quantizing error (±1/2 LSB).
(Note 3) The conversion time means the time from executing the AD conversion instruction to setting the complete digital
conversion value to the register.
No.6749-13/19
Page 14
LC86E7248
7. Current Dissipation Characteristics at Ta=+10°C to +40°C, VSS=VSS1=VSS2=VSS3=0V
Parameter Symbol Pins Conditions
Current dissipation
during basic
operation
(Note 4)
IDDOP(1) •FmCF=6MHz
IDDOP(2) •FmCF=3MHz
IDDOP(3) •FmCF=0Hz
IDDOP(4)
VDD1=
VDD2=
VDD3
Ceramic resonator
oscillation
•FsXtal=32.768kHz
crystal oscillation
•System clock :
CF oscillation
•Internal RC
oscillation stops
•1/1 divided
Ceramic resonator
oscillation
•FsXtal=32.768kHz
crystal oscillation
•System clock :
CF oscillation
•Internal RC
oscillation stops
•1/2 divided
(when oscillation
stops)
•FsXtal=32.768kHz
crystal oscillation
•System clock :
RC oscillation
•1/2 divided
•FmCF=0Hz
(when oscillation
stops)
•FsXtal=32.768kHz
crystal oscillation
•System clock :
crystal oscillation
•Internal RC
oscillation stops
•1/2 divided
Ratings
VDD[V] min. typ. max.
4.5-6.0 15 30
4.5-6.0 6 15
4.5-6.0 4 13
4.5-6.0 4 9
Continue.
unit
mA
No.6749-14/19
Page 15
LC86E7248
Parameter Symbol Pins Conditions
Current dissipation
in HALT mode
(Note 4)
Current dissipation
in HOLD mode
(Note 4)
IDDHALT(1) •HALT mode
IDDHALT(2) •HALT mode
IDDHALT(3) •HALT mode
IDDHALT(4)
IDDHALT(5)
IDDHOLD(1) VDD1=
VDD1=
VDD2=
VDD3
VDD2=
VDD3
•FmCF=6MHz
Ceramic resonator
oscillation
•FsXtal=32.768kHz
crystal oscillation
•System clock :
CF oscillation
•Internal RC
oscillation stops
•1/1 divided
•FmCF=3MHz
Ceramic resonator
oscillation
•FsXtal=32.768kHz
crystal oscillation
•System clock :
CF oscillation
•Internal RC
oscillation stops
•1/2 divided
FmCF=0Hz
(when oscillation
stops)
•FsXtal=32.768kHz
crystal oscillation
•System clock :
RC oscillation
•1/2 divided
•HALT mode
FmCF=0Hz
(when oscillation
stops)
•FsXtal=32.768kHz
crystal oscillation
•System clock :
crystal oscillation
•Internal RC
oscillation stops
•1/2 divided
HOLD mode
Ratings
VDD[V] min. typ. max.
4.5-6.0 6 11
4.5-6.0 2.2 9
4.5-6.0 500 1700
4.5-6.0 25 100
4.5-6.0 0.05 30
(Note 4) The currents of the output transistors and the pull-up MOS transistors are ignored.
* Both C3 and C4 must use J rank (±5%) and CH characteristics.
(It is about the application which is not in need of high precision. Use K rank (±10%) and SL characteristics.)
(Notes) •Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close
to the oscillation pins as possible with the shortest possible pattern length.
•If you use other oscillators herein, we provide no guarantee for the characteristics.