Datasheet L9339DIE1, L9339, L9339MD Datasheet (SGS Thomson Microelectronics)

Page 1
WIDE OPERATING SUPPLY VOLTAGE RANGE FROM 4.5V UP TO 32V FOR TRANSIENT 45V
VERY LOW STANDBY QUIESCENT CURRENT < 2µA
INPUT TO OUTPUT SIGNAL TRANSFER
FUNCTION PROGRAMMABLE
HIGH SIGNAL RANGE FROM -0.3V UP TO 32V FOR ALL INPUTS
TTL AND CMOS COMPATIBLE INPUTS
DEFINED OUTPUT OFF STATE FOR OPEN
INPUTS
FOUR OPEN DRAIN DMOS OUTPUTS, WITH R
OUTPUT CURRENT LIMITATION
CONTROLLED OUTPUT SLOPE FOR LOW EMI
OVERTEMPERATURE PROTECTION FOR
= 1.5ΩFOR VS>6VAT25°C
DSon
EACH CHANNEL
INTEGRATED OUTPUT CLAMPING FOR FAST INDUCTIVE RECIRCULATION V
FB
>45V
L9339
QUAD LOW SIDE DRIVER
MULTIPOWERBCD TECHNOLOGY
SO20 & SO20(12+4+4) BARE DIE
ORDERING NUMBER:
L9339MD (SO20 12+4+4) L9339 (SO20) L9339DIE1 (BARE DIE)
STATUS MONITORING FOR
- OVERTEMPERATURE
- DISCONNECTED GROUND OR SUPPLY VOLTAGE
DESCRIPTION
The L9339 is a monolithic integrated quad low side driver. It is intended to drive lines, lamps or relais in automotive or industrial applications.
BLOCK DIAGRAM
December 1999
IN 4
IN 1
PRG
GND
EN
VS
CHANNEL4
CHANNEL1
=
THERMAL
SHUT­DOWN
4
DIAGNO ST IC
LOGIC
REFERENCE
OUT4
OUT1
&
DIAG
Vint
Vlogic
1/9
Page 2
L9339
PIN CONNECTION (Top view)
NC
VS
NC IN3 IN4
EN
OUT4 OUT3
GND NC
NC NC
2 3 4 5 6 7 8 9 10
SO20
20 19 18 17 16 15 14 13 12 11
SO20 SO20 (12+4+4)
PIN FUNCTION
Pin Name Description
NC1 DIAG NC IN2 IN1 PRG OUT1 OUT2
IN1 IN2
DIAG
GND GND GND GND
VS IN3 OUT4 IN4 EN
SO 20 SO 20 (SO 12+4+4)
2 3 4 5 6 7 8 9 10
SO20 (12+4+4)
Package
20 19 18 17 16 15 14 13 12 11
PRG1 OUT1 OUT2 GND GND GND GND OUT3
VS Supply Voltage 2 8
GND Ground 9 4, 5, 6,7, 14, 15, 16, 17
EN Enable 6 11
PRG Programing 15 20
DIAG Diagnostic 19 3
IN 1 Input 1 16 1 IN 2 Input 2 17 2 IN 3 Input 3 4 9
IN 4 Input 4 5 10 OUT 1 OUTPUT 1 14 19 OUT 2 OUTPUT 2 13 18 OUT 3 OUTPUT 3 8 13
OUT4 OUTPUT4 7 12
NC Not Connected 1,3,10,11,12,18,20 -
2/9
Page 3
L9339
ABSOLUTEMAXIMUM RATINGS
(no damage or latch)
Symbol Parameter Value Unit
V
S
Supply voltage DC Supply voltage Pulse (T < 400ms)
/dt Supply voltage transient -10 ... +10 V/µs
dV
S
V
IN,VPRG
Input, Programming DC voltage Input, Programming Pulse (T <400ms)
I
IN
V
EN
Negative input current -10 mA Enable voltage DC
Enable voltage Pulse (T <400ms)
V
I
OUT
OUT
Output voltage
Negative output current Positive output current
V
DIAG
Diagnostic output voltage DC Diagnostic output voltage Pulse (T < 400ms)
Notes: 1. In flyback phase the output voltage can reach 60V.
ESD according toMIL 883C; tested at 2KV;corresponds to maximum energy dissipation 0.2mJ.
-0.3 ... 32
-0.3 ... 45
-0.3 ... 32
-0.3 ... 45
-24 ... 32
-24 ... 45
-0.3 ... 45
1)
-1
internal limited
-0.3 ... 32
-0.3 ... 45
V V
V V
V V
V
A
V V
THERMAL DATA
Symbol Parameter Min. Typ. Max. Unit.
T
JSDon
T
JSDoff
SO 12+4+4
R
th j-pin
R
th j-amb
SO 20
R
th j-amb
2. With 6cm2on board heat sink area.
3. Mounted onSMPCB2 board
Temperature shutdown switch-on-threshold 160 200 °C Temperature shutdown switch-off-threshold 140 180 °C
Thermal resistance junction to pins 15 °C/W
Thermal resistance junction to ambient
Thermal resistance junction to ambient
2)
3)
50 °C/W
97 °C/W
3/9
Page 4
L9339
ELECTRICAL CHARACTERISTCS
The electrical characteristics are valid within the below defined Operating Conditions, unless otherwise speci­fied. The function is guaranteed by design until T
Supply voltage 4.5 V to 32 V
V
S
Junction temperature -40 °Cto150°C
T
j
Ambient Temperature -40 °Cto125°C
T
amb
Note: Ambient test temperature = -40 °C to 125 °C
Symbol Parameter Test Condition Min. Typ. Max. Unit
SUPPLY:
switch-on-threshold.
JSDon
I
Quiescent current -0.3V < VEN< 0.5V; VS=14V;
Q
Inputs, IN1 - IN4; Programming, PRG:
V
V
INhigh
INlow
Input voltage LOW -0.3 2.0 V Input voltage HIGH 2.8 32 V Input current VIN= 0 ...32V -15 25 µA
I
IN
Enable EN:
V
ENlow
V
ENhigh
R
I
Input voltage LOW -24 1 V Input voltage HIGH 3.2 V Input impedance -24 V < VIN< 2.5 V 10 k
EN
Input current 2.5 V < VIN< 32V 20 80 µA
EN
Outputs OUT1- OUT4
R
DSon
I
OLeak
Output ON-resistor VS>6V,IO= 0.3A 1.7 3.8
Leakage current
-0.3V < V < 125 °C
T
a
< 150 °C
T
a
V
> 3.2V; VS< 14V 1.5 2 mA
EN
< 0.5V; VS=14V;
EN
<2 10 µA
50 µA
S
V
=14V;Ta< 125 °C<15µA
V
O=VS
V
OClamp
I
OSC
C
Output voltage during clamping time < 200µs
Short-circuit current 4.5V < VS< 6V 0.3 1 A
internal output capacities VO> 4.5V 100 pF
O
Diagnostic Output DIAG
V
Dlow
I
Dmax
Output voltage LOW IDL< 0.6mA 1.3 V Max. output current internal current limitation
4/9
=VS=14V;Ta< 150 °C25µA
V
O
45 52 60 V
10 mA< I
> 6V 0.4 0.7 1 A
V
S
<0.3A
O
1515mA
V
=14V
D
Page 5
L9339
ELECTRICAL CHARACTERISTICS
(Continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
I
DLeak
TIMING CHARCTERISTICS
t
d,on
t
d,off
t
t
d,DIAG
S
Note : All parameters are measured at T
Leakage current VD=VS=14V;Ta<125°C<0.11µA
=VS=14V;Ta<150°C5µA
V
D
4)
On delay time VS=14V,C
10mA < I
Off delay time 3 4.5 µs Enable settling time 10 µs
set
ext
< 200mA
O
= 0pF
2 3.5 µs
ON or OFF Diagnostic delay time 10 µs Output voltage slopes 2.5 9 16 V/µs
out
= 125°C.
4. See also Fig.3 Timing Characteristics
amb
Figure 1.
V
EN
V
INhig h
V
IN lo w
active
V
PRG
Non-InvertingMode Inverting Mode
V
INhig h
V
IN lo w
V
IN
V
INhig h
V
IN lo w
V
OUT
V
S
1/2 V
S
t
set
t
d,off
t
d,on
5. Output voltage slope not controlled for enable low!
t
t
t
5)
t
t
d,off
t
d,on
t
d,off
t
d,on
t
set
5/9
Page 6
L9339
FUNCTIONAL DESCRIPTION
The L9339 isa quad low side driver for lines, lamps or inductiveloads in automotive and industrial applications. The logic input levels are TTL and CMOS compatible. This allows the device to be driven directly by a micro-
controller. For the noise immunity, all input thresholds has a hysteresis of typ. 100mV. At each input (IN and PRG) voltages from -0.3V to 32V can be applied, EN can withstand voltages from -25V to 32V. The device is activated with a’high’ signal on ENable. ENable ’low’ switches the device intothe sleep mode.In this mode the quiescent current is less than 10µA. A high signal on PRoGramming input changes the signal transfer polarity from noninverting into the inverting mode. This pin can be connected to V PRG and EN pin is low, if these pins are not connected. This forced condition leads to a mode change if the PRG pin was high before the interruption. Independent of the PRoGramming input, the OUTput switches off, if the signal INput pin is not connected.
Each output driver hasa current limitation of min 0.4A anda independent thermal shut-down. The thermal shut­down deactivates that output, which exceeds temperature switch off level. When the junction temperature de­creases 20K below this temperature threshold the output will be activated again (hysteresis of the thermal shut­down function). The slew rate of the output voltage is limited to max. 14V/µs, to reduce the electromagnetic radiation of theloads and its wiring. For inductive loads aoutput voltage clamp of typicaly 52Vis implemented.
The DIAGnostic is an open drain output with an additional series diode. The logic status depends on the PRo­Gramming pin. If the PRG pin is ’low’ the DIAG output becomes low, if the device works correctly. At thermal shut-down of one channel the DIAGnostic output becomes high. If the PRG pin is ’high’ this output is switched off at normal function and switched on at overtemperature.
or GND. The forced status of the
S
Diagnostic Table
Pins EN PRG IN OUT DIAG
Correct function H L L L (on) L (on)
H L H H (off) L (on) H H L H (off) H (off) H H H L (on) H (off)
L X X H (off) H (off)
Overtemperature or supply voltage H L X H (off) * H (off)
Overtemperature H H X H(off) * L(on)
X = not relevant * selective for each channel at overtemperature
6/9
Page 7
Figure 2. Application for Inverting Transfer Polarity
BO AR D VOLT AG E 14 V
VCC = 5V
10µF
L9339
VCC
MICROCONTROLLER
GND
IN T
D0 D1 D2 D3
AdressdecoderA0:8
8
PR G
EN
IN 1 IN 2 IN 3 IN 4
VS
DIAG
U717
L9339
OUT 1 OUT 2 OUT 3 OUT 4
GND
Figure 3.Application for Non Inverting Transfer Polarity
BO ARD VO LTAG E 14 V
VC C = 5 V
2W 12mH
50 kHz
M
10µH
250 mA
240
50pF
VC C = 5V
VCC
IN
GND
10µF
VCC
MICROCONTROLLER
GND
IN T
D0 D1 D2 D3
AdressdecoderA0:8
8
PR G
EN
IN 1 IN 2 IN 3 IN 4
VS
DIAG
L9339
U717
OUT 1 OUT 2 OUT 3 OUT 4
GND
2W 12mH
50 kHz
Note: We recommend to use the device fordriving inductive loads with flyback energy EFB< 2mJ.
M
10µH
250 mA
240
50pF
VCC = 5V
VC C
IN
GND
7/9
Page 8
L9339
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.35 2.65 0.093 0.104
A1 0.1 0.3 0.004 0.012
B 0.33 0.51 0.013 0.020
C 0.23 0.32 0.009
D 12.6 13 0.496 0.512
E 7.4 7.6 0.291 0.299
e 1.27 0.050
H 10 10.65 0.394 0.419
h 0.25 0.75 0.010 0.030
L 0.4 1.27 0.016 0.050
K0°(min.)8°(max.)
mm inch
0.013
OUTLINE AND
MECHANICAL DATA
SO20 & SO20(12+4+4)
SO20
B
e
D
1120
110
L
hx45°
A
K
A1 C
H
E
SO20MEC
8/9
Page 9
L9339
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes noresponsibility for the consequences of use of suchinformationnor for anyinfringement of patents orother rights of third partieswhichmay result fromits use.No licenseis granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change withoutnotice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics - All Rights Reserved
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India -Italy - Japan - Malaysia -Malta - Morocco - Singapore - Spain
STMicroelectronics GROUP OFCOMPANIES
- Sweden - Switzerland - UnitedKingdom - U.S.A.
http://www.st.com
9/9
Loading...