Datasheet L6388ED Specification

Page 1
High voltage high and low-side driver
DIP-8 SO-8
Features
High voltage rail up to 600 V
dV/dt immunity ± 50 V/nsec in full temperature
Driver current capability:
– 400 mA source – 650 mA sink
Switching times 70/40 nsec rise/fall with 1 nF
load
3.3 V, 5 V, 15 V CMOS/TTL input comparators
with hysteresis and pull-down
Internal bootstrap diode
Outputs in phase with inputs
Deadtime and interlocking function
L6388E
Datasheet - production data
Description
The L6388E is a high voltage gate driver, manufactured with the BCD “offline” technology, and able to drive a half-bridge of power MOSFET/IGBT devices. The high-side (floating) section is enabled to work with voltage rail up to 600 V. Both device outputs can sink and source 650 mA and 400 mA respectively and cannot be simultaneously driven high thanks to an integrated interlocking function. Further prevention from outputs cross conduction is guaranteed by the deadtime function.
The L6388E device has two input and two output pins, and guarantees the outputs switch in phase with inputs. The logic inputs are CMOS/TTL compatible (3.3 V, 5 V and 15 V) to ease the interfacing with controlling devices.
The bootstrap diode is integrated in the driver allowing a more compact and reliable solution.
The L6388E device features the UVLO protection on both supply voltages (V ensuring greater protection against voltage drops on the supply lines.
CC
and V
BOOT
)
Applications
Home appliances
Industrial applications and drives
Motor drivers
– DC, AC, PMDC and PMAC motors
Induction heating
HVAC
Factory automation
Lighting applications
Power supply systems
October 2015 DocID13991 Rev 5 1/18
This is information on a product in full production.
The device is available in a DIP-8 tube and SO-8 tube, and tape and reel packaging options.
www.st.com
Page 2
Contents L6388E
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Input logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
C
selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BOOT
8 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.1 DIP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/18 DocID13991 Rev 5
Page 3
L6388E Block diagram
-0(*$
67
%&5&$5*0/
-&7&-
4)*'5&3
#005453"1%3*7&3
3
4
7
$$
-7(
%3*7&3
7
$$
)*/
-*/
)7(
%3*7&3
)7(
)7
50-0"%
065
-7(
(/%
7
#005
$
#005
4)005
5)306()
13&7&/5*0/
67
%&5&$5*0/
3
".

1 Block diagram

Figure 1. Block diagram

DocID13991 Rev 5 3/18
18
Page 4
Electrical data L6388E

2 Electrical data

2.1 Absolute maximum ratings

Symbol Parameter
dV
V
V
OUT
V
CC
BOOT
V
hvg
V
lvg
V
OUT
P
tot
T
T
Output voltage V
Supply voltage - 0.3 18 V
Floating supply voltage - 0.3 618 V
High-side gate output voltage V
Low-side gate output voltage -0.3 VCC +0.3 V
Logic input voltage -0.3 VCC +0.3 V
i
/dtAllowed output slew rate 50 V/ns
Total power dissipation (TJ = 85 °C) 750 750 mW
Junction temperature 150 150 °C
j
Storage temperature -50 150 °C
s
ESD Human body model 2 kV

2.2 Thermal data

Table 1. Absolute maximum ratings

Min. Max.
BOOT
OUT
Value
-18 V
-0.3 V
BOOT
BOOT
Unit
V
V

Table 2. Thermal data

Symbol Parameter SO-8 DIP-8 Unit
R
Thermal resistance junction to ambient 150 100 °C/W
th(JA)

2.3 Recommended operating conditions

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
V
OUT
V
BS
f
sw
V
CC
T
1. If the condition V
2. VBS = V
6 Output voltage
(2)
8 Floating supply voltage
3 Supply voltage 17 V
J
- V
BOOT

Table 3. Recommended operating conditions

Switching frequency HVG, LVG load CL = 1 nF 400 kHz
Junction temperature -45 125 °C
- V
BOOT
OUT
< 18 V is guaranteed, V
OUT
.
can range from -3 to 580 V.
OUT
(1)
(1)
17 V
580 V
4/18 DocID13991 Rev 5
Page 5
L6388E Pin connection
7
$$
)*/
-*/
(/%
-7(
065
)7(
7
#005
%*/"W

3 Pin connection

Figure 2.Pin connection (top view)

Table 4. Pin description

No. Pin Type Function
1 LIN I Low-side driver logic input
2 HIN I High-side driver logic input
3 V
P Low-voltage power supply
CC
4 GND P Ground
(1)
5 LVG
O Low-side driver output
6 OUT P High-side driver floating reference
7 HVG
8 V
1. The circuit guarantees 0.3 V maximum on the pin (at I “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.
(1)
O High-side driver output
P Bootstrap supply voltage
BOOT
= 10 mA). This allows the omission of the
sink
DocID13991 Rev 5 5/18
18
Page 6
Electrical characteristics L6388E

4 Electrical characteristics

4.1 AC operation

Table 5. AC operation electrical characteristics (VCC = 15 V; TJ = 25 °C)

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
t
on
1 vs. 5 2 vs. 7
t
off
t
r
t
f
High/low-side driver turn-on propagation delay
High/low-side driver turn-off propagation delay
= 0 V 225 300 ns
V
OUT
= 0 V 160 220 ns
V
OUT
5, 7 Rise time CL = 1000 pF 70 100 ns
5, 7 Fall time CL = 1000 pF 40 80 ns
DT 5, 7 Deadtime 220 320 420 ns

4.2 DC operation

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Low supply voltage section
V
CCth1
V
CCth2
V
CChys
I
QCCU
I
QCC
R
DS(on)
3
UV turn-on threshold 9.1 9.6 10.1 V
V
CC
VCC UV turn-off threshold 7.9 8.3 8.8 V
VCC UV hysteresis 0.9 V
Undervoltage quiescent supply current
Quiescent current VCC = 15 V 350 450 A
Bootstrap driver on resistance
Bootstrapped supply voltage section

Table 6. DC operation electrical characteristics

9 V 250 330 A
V
CC
(1)
V
12.5 V 125
CC
V
V
V
I
BSth1
BSth2
BShys
Q
BS
I
LK
8
UV turn-on threshold 8.5 9.5 10.5 V
V
BS
VBS UV turn-off threshold 7.2 8.2 9.2 V
VBS UV hysteresis 0.9 V
VBS quiescent current HVG ON 250 A
High voltage leakage current V
hvg
= V
OUT
High/low-side driver
I
so
I
si
Source short-circuit current V
5, 7
= Vih (tp < 10 s) 300 400 mA
IN
Sink short-circuit current VIN = Vil (tp < 10 s) 500 650 mA
6/18 DocID13991 Rev 5
= V
= 600 V 10 A
BOOT
Page 7
L6388E Electrical characteristics
R
DSON
VCCV
BOOT1
VCCV
BOOT2

I
1VCC,VBOOT1
I2VCC,V
BOOT2

-----------------------------------------------------------------------------------------------=
Table 6. DC operation electrical characteristics (continued)
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Logic inputs
1. R
V
V
ih
I
ih
I
il
DS(on)
il
Low logic level input voltage 1.1 V
High logic level input voltage 1.8 V
1, 2
High logic level input current VIN = 15 V 20 70 A
Low logic level input current VIN = 0 V -1 A
is tested in the following way:
where:
I
is pin 8 current when V
1
BOOT
= V
BOOT1
, I2 when V
BOOT
= V
BOOT2
.
DocID13991 Rev 5 7/18
18
Page 8
Waveform definitions L6388E
DT DT
DT
LIN
HIN
LVG
HVG
Interlocking function

5 Waveform definitions

Figure 3. Deadtime time waveform definition

Figure 4. Propagation delay waveform definition

8/18 DocID13991 Rev 5
Page 9
L6388E Input logic
C
EXT
Q
gate
V
gate
-------------- -=

6 Input logic

Input logic is provided with an interlocking circuitry which avoids the two outputs (LVG, HVG) being active at the same time when both the logic input pins (LIN, HIN) are at a high logic level. In addition, to prevent cross conduction of the external MOSFETs, after each output is turned off, the other output cannot be turned on before a certain amount of time (DT) (see
Figure 3).

7 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (Figure 5 a). In the L6388E device, a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 5 b. An internal charge pump (Figure 5 b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid an undesirable turn-on.
C
BOOT
selection and charging
To choose the proper C capacitor. This capacitor C
Equation 1
The ratio between the capacitors C It must be:
E.g.: if Q
is 30 nC and V
gate
300 mV.
If HVG must be supplied for a long period, the C losses into account.
E.g.: HVG steady-state consumption is typical 250 A, so, if HVG T supply 1.25 C to C
EXT
The internal bootstrap driver offers important advantages: the external fast recovery diode can be avoided (it usually has a high leakage current).
This structure can work only if V LVG is on. The charging time (T fulfilled and it must be long enough to charge the capacitor.
value, the external MOSFET can be seen as an equivalent
BOOT
is related to the MOSFET total gate charge:
EXT
is 10 V, C
gate
EXT
and C
C
BOOT
EXT
is proportional to the cyclical voltage loss.
BOOT
>>>C
EXT
is 3 nF. With C
selection must also take the leakage
BOOT
= 100 nF the drop is
BOOT
is 5 ms, C
ON
BOOT
. This charge on a 1 F capacitor means a voltage drop of 1.25 V.
is close to GND (or lower) and, at the same time, the
OUT
charge
) of the C
is the time in which both conditions are
BOOT
must
The bootstrap driver introduces a voltage drop due to the DMOS R
(typical value:
DS(on
)
125 ). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency.
DocID13991 Rev 5 9/18
18
Page 10
Bootstrap driver L6388E
V
dropIch eargRdsonVdrop
Q
gate
T
ch earg
------------------- R
dson
==
V
drop
30nC
5s
-------------- - 125 0.8V=
TO LOAD
H.V.
HVG
a
b
LVG
HVG
LVG
C
BOOT
TO LOAD
H.V.
C
BOOT
D
BOOT
V
BOOT
V
S
V
S
V
OUT
V
BOOT
V
OUT
The following equation is useful to compute the drop on the bootstrap DMOS:
Equation 2
where Q of the bootstrap DMOS, and T
is the gate charge of the external power MOSFET, R
gate
is the charging time of the bootstrap capacitor.
charge
is the on-resistance
DS(on
)
For example: using a power MOSFET with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the T
charge
is 5 s.
In fact:
Equation 3
V
should be taken into account when the voltage drop on C
drop
is calculated: if this drop
BOOT
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used.

Figure 5. Bootstrap driver

10/18 DocID13991 Rev 5
Page 11
L6388E Typical characteristics
For both high and low side buffers @25˚C Tamb
0 1 2 3 4 5 C (nF)
0
50
100
150
200
250
time
(nsec)
T
r
D99IN1054
T
f
0
2 4 6 8 10 12 14 16 V
S
(V)
10
10
2
10
3
10
4
Iq
(μA)
D99IN1055
-45 -25 0 25 50 75 100 125
5
6
7
8
9
10
11
12
13
V
BSth1
(V)
Tj (˚C
)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
Vccth2(V)
Tj (˚C
)
Typ.
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
12
13
14
Typ.
@ Vcc = 15V
V
BSth2
(V)
-45-250 255075100125
0
200
400
600
800
1000
current (mA)
Tj (˚C
)
Typ.
@ Vcc = 15V

8 Typical characteristics

Figure 6. Typical rise and fall times
Figure 8. V
vs. load capacitance
UV turn-on threshold
BOOT
vs. temperature
Figure 7. Quiescent current vs. supply
voltage
Figure 9. VCC UV turn-off threshold
vs. temperature
Figure 10. V
UV turn-off threshold
BOOT
vs. temperature
DocID13991 Rev 5 11/18
Figure 11. Output source current
vs. temperature
18
Page 12
Typical characteristics L6388E
-45 -25 0 25 50 75 100 125
7
8
9
10
11
12
13
Vccth1(V)
Tj (˚C
)
Typ.
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (˚C
)
Typ.
@ Vcc = 15V
Figure 12. VCC UV turn-on threshold
vs. temperature
Figure 13. Output sink current
vs. temperature
12/18 DocID13991 Rev 5
Page 13
L6388E Package information
$0Y

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.
®
packages, depending on their level of environmental compliance. ECOPACK

9.1 DIP-8 package information

Figure 14. DIP-8 package outline

DocID13991 Rev 5 13/18
18
Page 14
Package information L6388E

Table 7. DIP-8 package mechanical data

Dimensions (mm)
Symbol
Min. Typ. Max.
A 3.32
a1 0.51
B 1.15 1.65
b 0.356 0.55
b1 0.204 0.304
D 10.92
E 7.95 9.75
e 2.54
e3 7.62
e4 7.62
F 6.6
I 5.08
L 3.18 3.81
Z 1.52
14/18 DocID13991 Rev 5
Page 15
L6388E Package information
$0Y

9.2 SO-8 package information

Figure 15. SO-8 package outline

Table 8. SO-8 package mechanical data

Dimensions (mm)
Symbol
Min. Typ. Max.
A 1.75
A1 0.10 0.25
A2 1.25
b 0.28 0.48
c 0.17 0.23
D 4.80 4.90 5.00
E 5.80 6.00 6.20
E1 3.80 3.90 4.00
e1.27
h 0.25 0.50
L 0.40 1.27
L1 1.04
k0° 8°
ccc 0.10
DocID13991 Rev 5 15/18
18
Page 16
Order codes L6388E

10 Order codes

Part number Package Packaging
L6388E DIP-8 Tube
L6388ED SO-8 Tube
L6388ED013TR SO-8 Tape and reel

Table 9. Order codes

16/18 DocID13991 Rev 5
Page 17
L6388E Revision history

11 Revision history

Table 10. Document revision history

Date Revision Changes
11-Oct-2007 1 First release
Updated Table 2, Table 7 and Section 6.1.
29-Feb-2012 2
DIP-8 mechanical data and package dimensions have been updated.
SO-8 mechanical data and package dimensions have been updated.
31-Jan-2013 3 Update note in Section 2.1.
Added Section : Applications on page 1. Updated Section : Description on page 1 (replaced by new
description). Updated Table 1: Device summary on page 1 (moved from page 17
to page 1, renamed title of Table 1). Updated Figure 1: Block diagram on page 3 (moved from page 1 to
page 3, added Section 1: Block diagram on page 3).
19-Jun-2014 4
Updated Section 2.1: Absolute maximum ratings on page 4 (removed note below Table 2: Absolute maximum ratings).
Updated Table 5: Pin description on page 5 (added “Type” for several pins).
Updated Section 9: Package information on page 14 (added/updated titles, reversed order of Figure 14 and Tabl e 8 , Figure 15 and ,Tab le 9 minor modifications).
Minor modifications throughout document.
21-Oct-2015 5
Updated Table 1 on page 4 (added ESD row). Updated note 1. below Table 6 on page 6 (replaced V
).
V
BOOTx
CBOOTx
by
Added Section 10: Order codes on page 16 (moved Table 9 from page 1, updated title).
Minor modifications throughout document.
DocID13991 Rev 5 17/18
18
Page 18
L6388E
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
18/18 DocID13991 Rev 5
Loading...