Datasheet L6385E, L6385ED Specification

Page 1
High voltage high and low-side driver
DIP-8 SO-8
Features
High voltage rail up to 600 VdV/dt immunity ± 50 V/nsec in full temperature
Driver current capability:
– 400 mA source – 650 mA sink
Switching times 50/30 nsec rise/fall with 1 nF
load
CMOS/TTL Schmitt trigger inputs with
hysteresis and pull-down
Undervoltage lockout on lower and upper
driving section
Internal bootstrap diodeOutputs in phase with inputs
Applications
Home appliancesInduction heatingHVACMotor drivers
– SR motors – DC, AC, PMDC and PMAC motors
Asymmetrical half-bridge topologiesIndustrial applications and drivesLighting applicationsFactory automationPower supply systems
L6385E
Datasheet - production data
Description
The L6385E is a simple and compact high volt age gate driver , manufactured with the BCD™ “of fline” technology, and able to drive a half-bridge of power MOSFET or IGBT devices. The high-side (floating) section is able to work with voltage rail up to 600 V . Both device outputs can independently sink and source 650 mA and 400 mA respectively and can be simultaneously driven high.
The L6385E device provides two input pins and two output pins and guarantees the outputs tog gle in phase with inputs. The logic inputs are CMOS/TTL compatible to ease the interfacing with controlling devices.
The bootstrap diode is integrated inside the device, allowing a more compact and reliable solution.
The L6385E features the UVLO protection on both lower and upper driving sections (V V
), ensuring greater protection against volt age
boot
drops on the supply lines. The device is available in a DIP-8 tube and SO-8
tube, and tape and reel packaging options.
Part number Package Packaging
L6385ED SO-8 Tube
L6385ED013TR SO-8 Tape and reel

Table 1. Device summary

L6385E DIP-8 Tube
CC
and
December 2014 DocID13863 Rev 3 1/15
This is information on a product in full production.
www.st.com
Page 2
Contents L6385E
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
C
selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BOOT
6 Typical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2/15 DocID13863 Rev 3
Page 3
L6385E Block diagram
LOGIC
UV
DETECTION
LEVEL
SHIFTER
BOOTSTRAP DRIVER
R R S
V
CC
LVG
DRIVER
V
CC
8
7
6
5
4
HIN
LIN
HVG
DRIVER
HVG
H.V.
TO LOAD
OUT
LVG
GND
D97IN514B
Vboot
3
2
1
Cboot
UV
DETECTION

1 Block diagram

Figure 1. Block diagram

DocID13863 Rev 3 3/15
15
Page 4
Electrical data L6385E

2 Electrical data

2.1 Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
V
V
dV
P
T
Output voltage -3 to V
out
Supply voltage - 0.3 to +18 V
cc
Floating supply voltage -1 to 618 V
boot
High-side gate output voltage -1 to V
hvg
Low-side gate output voltage -0.3 to Vcc +0.3 V
lvg
Logic input voltage -0.3 to Vcc +0.3 V
V
i
Allowed output slew rate 50 V/ns
out/dt
Total power dissi pation (TJ = 85 °C) 750 mW
tot
T
Junction temperature 150 °C
j
Storage temperature -50 to 150 °C
s

2.2 Thermal data

Symbol Parameter SO-8 DIP-8 Unit

Table 2. Absolute maximum ratings

Table 3. Thermal data

-18 V
boot
V
boot
R
Thermal resistance junction to ambient 150 100 °C/W
th(JA)

2.3 Recommended operating conditions

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
V
out
V
BS
f
sw
V
cc
T
1. If the condition V
2. VBS = V
6 Output voltage
(2)
8 Floating supply voltage
3 Supply voltage 17 V
J
- V
boot

Table 4. Recommended operating conditions

Switching frequency HVG,LVG load CL = 1 nF 400 kHz
Junction temperature -45 125 °C
- V
out
boot
.
< 18 V is guaranteed, V
out
can range from -3 to 580 V.
out
(1) (1)
17 V
580 V
4/15 DocID13863 Rev 3
Page 5
L6385E Pin connection
V
CC
HIN
LIN
GND
1
3
2
4 LVG
OUT
HVG
V
boot
8 7 6 5
D97IN517A

3 Pin connection

Figure 2. Pin connection (top view)

Table 5. Pin description

No. Pin Type Function
1 LIN I Low-side driver logic input 2 HIN I High-side driver logic input 3 V
P Low voltage power supply
CC
4 GND P Ground 5 LVG
(1)
O Low-side driver output 6 OUT P High-side driver floating reference 7 HVG 8 V
1. The circuit guarantees 0.3 V maximum on the pin (at Isink = 10 mA). This allows to omit the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.
(1)
O High-side driver output
P Bootstrap supply voltage
boot
DocID13863 Rev 3 5/15
15
Page 6
Electrical characteristics L6385E

4 Electrical characteristics

4.1 AC operation

Table 6. AC operation electrical characteristics (VCC = 15 V; TJ = 25 °C)

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
t
t
1 vs. 5
on
2 vs. 7 1 vs. 5
off
2 vs. 7
t
r
t
f
High/low-side driver turn-on propagation delay
High/low-side driver turn-off propagation delay
= 0 V 110 ns
V
out
= 0 V 105 ns
V
out
5, 7 Rise time CL = 1000 pF 50 ns 5, 7 Fall time CL = 1000 pF 30 ns

4.2 DC operation

Table 7. DC operation electrical characteristics (VCC = 15 V; TJ = 25 °C)

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Low supply voltage section
V V V V
cchys
I
qccu
cc ccth1 ccth2
Supply voltage 17 V VCC UV turn-on threshold 9.1 9.6 10.1 V VCC UV turn-off threshold 7.9 8.3 8.8 V VCC UV hysteresis 1.3 V
3
Undervoltage quiescent supply current
V
9 V 150 220 A
cc
I
qcc
R
dson
Quiescent current Vin = 15 V 250 320 A Bootstrap driver on resistance
(1)
V
12.5 V 125
cc
Bootstrapped supply voltage section
V
BS
V
V
BSth1
V
V
BSth2
V
V
BShys
I
QBS
I
LK
Bootstrap supply voltage 17 V
UV turn-on threshold 8.5 9.5 10.5 V
BS
UV turn-off threshold 7.2 8.2 9.2 V
BS
8
UV hysteresis 1.3 V
BS
VBS quiescent current HVG ON 200 A High voltage leakage current V
hvg
= V
out
= V
= 600 V 10 A
boot
High/low-side driver
I
so
I
Sink short-circuit current VIN = Vil (tp < 10 s) 450 650 mA
si
Source short-circuit current V
5, 7
= Vih (tp < 10 s) 300 400 mA
IN
6/15 DocID13863 Rev 3
Page 7
L6385E Electrical characteristics
R
DSON
V
CCVCBOOT1
V
CCVCBOOT2

I
1VCC,VCBOOT1
I2VCC,V
CBOOT2

------------------------------------------------------------------------------------------------------ -=
HIN
HVG
LVG
LIN
D99IN1053
Table 7. DC operation electrical characteristics (VCC = 15 V; TJ = 25 °C) (continued)
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Logic inputs
Vil
Low level logic threshold voltage 1.5 V
1, 2
V
ih
I
ih
I
il
1. R
where I
is tested in the following way:
DS(on)
is pin 8 current when V
1
High level logic threshold voltage High level logic input current V
1, 2
Low level logic input current VIN = 0 V 1 A
CBOOT
= V
CBOOT1
, I2 when V

4.3 Timing diagram

Figure 3. Input/output timing diagram

3.6 V = 15 V 50 70 A
IN
CBOOT
= V
CBOOT2
.
DocID13863 Rev 3 7/15
15
Page 8
Bootstrap driver L6385E
C
EXT
Q
gate
V
gate
-------------- -=
V
dropIch eargRdsonVdrop
Q
gate
T
ch earg
------------------- R
dson
==

5 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (Figure 4 a). In the L6385E device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 4 b. An internal charge pump (Figure 4 b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn-on.
C
BOOT
selection and charging
To choose the proper C capacitor. This capacitor C
Equation 1
The ratio between the capacitors C It has to be:
E.g.: if Q
is 30nC and V
gate
300 mV. If HVG has to be supplied for a long time, the C
the leakage losses. E.g.: HVG steady state consumption is lower than 200 A, so if HVG T
has to supply a maximum of 1 µC to C drop of 1 V.
The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has a great leakage current).
This structure can work only if V L VG is on. The ch argin g time (T fulfilled and it has to be long enough to charge the capacitor.
value, the external MOS can be seen as an equivalent
BOOT
is related to the MOS total gate charge:
EXT
is 10V, C
gate
and C
EXT
C
BOOT
EXT
. This charge on a 1mF capacitor m eans a volt age
EXT
is close to GND (or lower) and in the meanwhile the
OUT
) of the C
charge
is proportional to the cyclical voltage loss.
BOOT
>>>C
EXT
is 3nF. With C
selection has to take into account also
BOOT
is the time in which both conditions are
BOOT
= 100nF the drop would be
BOOT
ON
is 5 ms, C
BOOT
The bootstrap driver introduces a voltage drop due to the DMOS R 125 ). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.
The following equation is useful to compute the drop on the bootstrap DMOS:
Equation 2
where Q bootstrap DMOS, and T
8/15 DocID13863 Rev 3
is the gate charge of the external power MOS, R
gate
is the charging time of the bootstrap capacitor.
charge
(typical value:
DSON
is the on resistance of the
dson
Page 9
L6385E Bootstrap driver
V
drop
30nC
5s
-------------- - 125 0.8V=
TO LOAD
D99IN1056
H.V.
HVG
ab
LVG
HVG
LVG
C
BOOT
TO LOAD
H.V.
C
BOOT
D
BOOT
V
BOOT
V
S
V
S
V
OUT
V
BOOT
V
OUT
For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T
is 5 ms. In fact:
charge
Equation 3
V
has to be taken into account when the voltage drop on C
drop
is calculated: if this drop
BOOT
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diod e can be used.

Figure 4. Bootstrap driver

DocID13863 Rev 3 9/15
15
Page 10
Typical characteristic L6385E
For both high and low side buffers @25˚C Tamb
0 1 2 3 4 5 C (nF)
0
50
100
150
200
250
time
(nsec)
Tr
D99IN1054
Tf
0
2 4 6 8 10 12 14 16 V
S
(V)
10
10
2
10
3
10
4
Iq
(μA)
D99IN1055
-45 -25 0 25 50 75 100 125
0
50
100
150
200
250
Ton (ns)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
0
50
100
150
200
250
Toff (ns)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
5
6
7
8
9
10
11
12
13
Vbth1 (V)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
Vccth2(V)
Tj (°C)
Typ.

6 Typical characteristic

Figure 5. Typical rise and fall times

Figure 7. Turn-on time vs. temperature Figure 8. Turn-off time vs. temperature

vs. load capacitance
Figure 6. Quiescent current vs. supply
voltage
10/15 DocID13863 Rev 3
Figure 9. V
UV turn-on threshold
BOOT
vs. temperature
Figure 10. VCC UV turn-off threshold
vs. temperature
Page 11
L6385E Typical characteristic
-45 -25 0 25 50 75 100 125
6
7
8
9
10
11
12
13
14
Vbth2 (V)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
-45 -25 0 25 50 75 100 125
7
8
9
10
11
12
13
Vccth1(V)
Tj (°C)
Typ.
-45 -25 0 25 50 75 100 125
0
200
400
600
800
1000
current (mA)
Tj (°C)
Typ.
@ Vcc = 15V
Figure 11. V
Figure 13. VCC UV turn-on threshold
UV turn-off threshold
BOOT
vs. temperature
vs. temperature
Figure 12. Output source current
vs. temperature
Figure 14. Output sink current
vs. temperature
DocID13863 Rev 3 1 1/15
15
Page 12
Package information L6385E

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 15. DIP-8 package outline

Table 8. DIP-8 package mechanical data

Dimensions (mm) Dimensions (inch)
Symbol
Min. Typ. Max. Min. Typ. Max.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200 L 3.18 3.81 0.125 0.150 Z 1.52 0.060
12/15 DocID13863 Rev 3
Page 13
L6385E Package information
$09

Figure 16. SO-8 package outline

Table 9. SO-8 package mechanical data

Dimensions (mm) Dimensions (inch)
Symbol
Min. Typ. Max. Min. Typ. Max.
A 1.750 0.0689
A1 0.100 0.250 0.0039 0.0098 A2 1.250 0.0492
b 0.280 0.480 0.0110 0.0189 c 0.170 0.230 0.0067 0.0091
(1)
D
4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1
(2)
3.800 3.900 4.000 0.1496 0.1535 0.1575 e 1.270 0.0500 h 0.250 0.500 0.0098 0.0197 L 0.400 1.270 0.0157 0.0500
L1 1.040 0.0409
k0°8°0°8°
ccc 0.10 0.0039
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides).
2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.
DocID13863 Rev 3 13/15
15
Page 14
Revision history L6385E

8 Revision history

Table 10. Document revision history

Date Revision Changes
02-Oct-2007 1 First release
Added Section : Applications on page 1. Updated Section : Description on page 1 (replaced by new
description). Updated Table 1: Device summary on page 1 (moved from page 15
to page 1, renamed title of Table 1). Updated Figure 1: Block diagram on page 3 (moved from page 1 to
page 3, added Section 1: Block diagram on page 3). Updated Section 2.1: Absolute maximum ratings on page 4
(removed note below Table 2: Absolute maximum ratings).
19-Jun-2014 2
Updated Table 5: Pin description on page 5 (updated “Pin” and “Type”).
Updated Section : C
BOOT
values of “E.g.: HVG”). Numbered Equation 1 on page 8, Equation 2 on page 8 and
Equation 3 on page 9.
Updated Section 7: Package information on page 12 [updated/added titles, reversed order of Figure 15 and Table 8, Figure 16 and Table 9 (numbered tables), removed 3D package figures, minor modifications].
Minor modifications throughout document.
selection and charging on page 8 (updated
01-Dec-2014 3
Updated Section : Description on page 1. Updated Table 7 on page 6 (corrected typo in units of
parameters).
I
so
” and “Isi”
14/15 DocID13863 Rev 3
Page 15
L6385E
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such produ ct.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID13863 Rev 3 15/15
15
Loading...