Datasheet IRS2183STRPBF, IRS21834STRPBF, IRS21834, IRS2183 Datasheet (IRF)

Page 1
Data Sheet No. PD60265
IRS2183/IRS21834(S)PbF
Features
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt
Packages
HALF-BRIDGE DRIVER
immune Gate drive supply range from 10 V to 20 V
Undervoltage lockout for both channels
3.3 V and 5 V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5 V offset
Lower di/dt gate driver for better noise immunity
Output source/sink current capability 1.4 A/1.8 A
RoHS compliant
Description
The IRS2183/IRS21834 are high voltage,
8-Lead SOIC
IRS2183S
8-Lead PDIP
IRS2183
14-Lead PDIP
IRS21834
14-Lead SOIC
IRS21834S
high speed power MOSFET and IGBT drivers with dependent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse cur­rent buffer stage designed for minimum
Feature Comparison
Part
2181 COM
21814
2183 Internal 400 COM
21834
2184 Internal 400 COM
21844
Input logic
HIN/LIN no none
HIN/LIN yes
IN/SD yes
Cross-
conduction
prevention
logic
Deadtime
(ns)
Program 400-5000 VSS/COM
Program 400-5000 VSS/COM
Ground Pins
VSS/COM
ton/t
(ns)
180/220
180/220
680/270
off
driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Typical Connection
V
CC
V
HIN
LIN
(Refer to Lead Assignment for correct pin configuration) These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
HIN LIN
www.irf.com
CC
V
B
HO
V
S
LOCOM
IRS2183
V HIN
V
LIN
up to 600 V
TO
LOAD
up to 600 V
V
V
CC
CC
SS
HIN LIN DT V
R
DT
B
V
S
COM
SS
LO
IRS21834
TO
LOAD
1
Page 2
IRS2183/IRS21834(S)PbF
LIN
LIN
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param­eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol Definition Min. Max. Units
V
B
V
S
V
HO
V
CC
V
LO
DT Programmable deadtime pin voltage (IR21834 only) VSS - 0.3 V V
IN
V
SS
dVS/dt Allowable offset supply voltage transient 50 V/ns
P
D
Rth
JA
T
J
T
S
T
L
Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15 V differential.
Symbol Definition Min. Max. Units
V
B
V
S
V
HO
V
CC
V
LO
V
IN
DT Programmable deadtime pin voltage (IR21834 only) V
V
SS
T
A
Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
High-side floating absolute voltage -0.3 620 (Note 1) High-side floating supply offset voltage VB - 20 VB + 0.3 High-side floating output voltage VS - 0.3 V
+ 0.3
B
Low-side and logic fixed supply voltage -0.3 20 (Note 1) Low-side output voltage -0.3 VCC + 0.3
+ 0.3
CC
Logic input voltage (HIN & Logic ground (IR21834 only) V
) VSS - 0.3 V
- 20 VCC + 0.3
CC
CC
+ 0.3
(8-lead PDIP) 1.0
Package power dissipation @ TA +25 °C
(8-lead SOIC) 0.625
(14-lead PDIP) 1.6
W
(14-lead SOIC) 1.0
(8-lead PDIP) 125
Thermal resistance, junction to ambient
(8-lead SOIC) 200
(14-lead PDIP) 75
°C/W
(14-lead SOIC) 120 Junction temperature 150 Storage temperature -50 150
°C
Lead temperature (soldering, 10 seconds) 300
High-side floating supply absolute voltage VS + 10 VS + 20 High-side floating supply offset voltage Note 2 600 High-side floating output voltage V
S
V
B
Low-side and logic fixed supply voltage 10 20 Low-side output voltage 0 V Logic input voltage (HIN &
) V
SS SS
CC
V
CC
V
CC
Logic ground (IR21834 only) -5 5 Ambient temperature -40 125 °C
V
V
www.irf.com 2
Page 3
IRS2183/IRS21834(S)PbF
LIN
LIN
LIN
LIN
Dynamic Electrical Characteristics
V
(VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
BIAS
Symbol Definition Min. Typ. Max.UnitsTest Conditions
t
on
t
off
MT Delay matching | ton - t
t
t
DT
MDT Deadtime matching = | DTLO-HO - DTHO-LO |
Static Electrical Characteristics
V
BIAS
parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol Definition Min. Typ.Max.UnitsTest Conditions
V
V
V
OH
V
OL
I
LK
I
QBS
I
QCC
I
IN+
I
IN-
V
CCUV+
V
BSUV+
V
CCUV-
V
BSUV-
V
CCUVH
V
BSUVH
I
O+
I
O-
Turn-on propagation delay 180 270 VS = 0V Turn-off propagation delay 220 330 VS = 0V or 600V
off
|
Turn-on rise time 40 60
r
Turn-off fall time 20 35
f
Deadtime: LO turn-off to HO turn-on(DT HO turn-off to LO turn-on (DT
(VCC, VBS) = 15 V, VSS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, V
IH
Logic “1” input voltage for HIN & logic “0” for Logic “0” input voltage for HIN & logic “1” for
IL
High level output voltage, V Low level output voltage, V Offset supply leakage current 50 VB = VS = 600 V Quiescent VBS supply current 20 60 150 Quiescent VCC supply current 0.4 1.0 1.6 mA Logic “1” input bias current 25 60 HIN = 5 V, Logic “0” input bias current 5.0 HIN = 0 V, VCC and VBS supply undervoltage positive going threshold VCC and V threshold
Hysteresis 0.3 0.7
Output high short circuit pulsed current 1.4 1.9
Output low short circuit pulsed current 1.8 2.3
supply undervoltage negative going
BS
BIAS
O
- V
LO-HO) &
HO-LO)
O
0 35
280 400 520 RDT= 0 4 5 6 µs RDT = 200 k (IR21834) 0 50 RDT=0 0 600 RDT = 200k (IR21834)
2.5 — — 0.8 — 1.4 IO = 0 A — 0.2 IO = 20 mA
8.0 8.9 9.8
7.4 8.2 9.0
ns
ns
V
µA
µA
V
A
VS = 0 V
and I
IH,
IN
VCC = 10 V to 20 V
V
= 0 V or 5 V
IN
= 0 V = 5 V
VO = 0 V,
PW10 µs
VO = 15 V,
PW10 µs
www.irf.com 3
Page 4
Functional Block Diagrams
2183
HIN
VSS/COM
LEVEL
SHIFT
PULSE
GENERATOR
IRS2183/IRS21834(S)PbF
VB
UV
HV
LEVEL
SHIFTER
PULSE FILTER
DETECT
R
Q
R S
HO
VS
LIN
HIN
DT
LIN
DT
+5V
VSS
+5V
DEADTIME &
SHOOT-THROUGH
PREVENTION
21834
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
PULSE
GENERATOR
DELAY
DELAY
HV
LEVEL
SHIFTER
PULSE FILTER
UV
DETECT
UV
DETECT
DETECT
VCC
LO
COM
VB
R
Q
R S
HO
VS
VCC
UV
LO
COM
VSS
www.irf.com 4
Page 5
IRS2183/IRS21834(S)PbF
LIN
Lead Definitions
SymbolDescription
HIN
DT Programmable deadtime lead, referenced to VSS (IRS21834 only) V
SS
V
B
HO High-side gate driver output V
S
V
CC
LO Low-side gate driver output COM Low-side return
Lead Assignments
Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2183 and VSS for IRS21834) Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2183 and VSS for IRS21834)
Logic ground (IRS21834 only) High-side floating supply
High-side floating supply return Low-side and logic fixed supply
1
HIN
2
LIN
3
COM
4
LO
V
8
B
HO
7
V
6
S
V
5
CC
1
HIN
2
LIN
3
COM
4
LO
8-Lead PDIP 8-Lead SOIC
IRS2183PbF IRS2183SPbF
V
HO
V
14
13
B
12 11
S
10
9 8
1
HIN
2
LIN
3
VSS
4
DT
5
COM
6
LO
7
V
CC
14-Lead PDIP 14-Lead SOIC
1
HIN
2
LIN
3
VSS
4
DT
5
COM
6
LO
7
V
CC
IRS21834PbF IRS21834SPbF
V
8
B
HO
7
V
6
S
V
5
CC
14
V
13
B
HO
12
V
11
S
10
9 8
www.irf.com 5
Page 6
IRS2183/IRS21834(S)PbF




Figure 1. Input/Output Timing Diagram



 




 



 

 
Figure 2. Switching Time Waveform Definitions

 


 













Figure 3. Deadtime Waveform Definitions
www.irf.com 6
Page 7
IRS2183/IRS21834(S)PbF
500
400
300
Max.
200
Typ.
100
0
Turn-On Propagation Delay (ns)
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 4A. Turn-On Propagation Delay
vs. Temperature
600
500
400
Max.
300
Typ.
200
500
400
Max.
300
Typ.
200
100
0
Turn-On Propagation Delay (ns)
10 12 14 16 18 20
Supply Voltage (V)
Figure 4B. Turn-On Propagation Delay
vs. Supply Voltage
600 500
Max.
400 300
Typ.
200 100
100
Turn-Off Propagation Delay (ns)
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 5A. Turn-Off Propagation Delay
vs. Temperature
0
Turn-Off Propagation Delay (ns)
10 12 14 16 18 20
Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay
vs. Sup ply Voltag e
www.irf.com 7
Page 8
IRS2183/IRS21834(S)PbF
120 100
80 60
Max.
40
Typ.
20
Turn-On Rise Time (ns)
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 6A. Turn-On Rise Time vs. Temperature
80
60
40
Max.
Typ
20
Turn-Off Fall Time (ns)
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
120 100
Max.
80 60
Typ.
40 20
Turn-On Rise Time (ns)
0
10 12 14 16 18 20
Supply Voltage (V)
Figure 6B. Turn-On Rise Time vs. Supply Voltage
80
60
Max.
40
Typ.
20
Turn-Off Fall Time (ns)
0
10 12 14 16 18 20
Supply Voltage (V)
Figure 7A. Turn-Off Fall Time vs. Temperature
Figure 7B. Turn-Off Fall Time vs. Supply Voltage
www.irf.com 8
Page 9
IRS2183/IRS21834(S)PbF
1100
900
700
Max.
500
300
Typ.
Min.
Deadtime (ns)
100
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 8A. Deadtime vs. Temperature
7 6 5 4 3 2
Deadtime (µs)
1 0
0 50 100 150 200
R
(kΩ )
DT
Max.
Typ.
Min.
1100
900
700
Max.
Typ.
500
Deadtime (ns)
300
Min.
100
10 12 14 16 18 20
Supply Voltage (V)
F igure 8B . Deadtime vs. Supply Voltage
6 5 4 3
Min.
2
Input Voltage (V)
1 0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
F igure 8C. Deadtime vs. R
DT
Figure 9A. Logic "1" Input Voltage
vs. Temperature
www.irf.com 9
Page 10
IRS2183/IRS21834(S)PbF
Input Voltage (V)
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
High Level Output Voltage (V)
6 5 4 3
Min.
2 1 0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
6 5 4 3 2
Max.
1
6 5 4 3 2
Max.
1 0
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 10A. Logic "0" Input Voltage
vs. Temperature
5.0
4.0
3.0
2.0
Max.
1.0
0
10 12 14 16 18 20
Supply Voltage (V)
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
0.0
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 11A. High Level Output Voltage
vs. Temperature (Io = 0 mA)
www.irf.com 10
Page 11
IRS2183/IRS21834(S)PbF
High Level Output Voltage (V)
5.0
4.0
3.0
2.0
Max
1.0
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 11B. High Level Output Voltage
vs. Supply Voltage (Io = 0 mA)
0.5
0.4
0.3
Max.
0.2
0.5
0.4
0.3
Max.
0.2
0.1
Low Level Output (V)
0.0
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 12A. Low Level Output vs. Temperature
500
A)
400
300
200
0.1
Low Level Output (V)
0.0 10 12 14 16 18 20
Supply Voltage (V)
Figure 12B. Low Level Output vs. Supply Voltage
100
Max.
0
-50 -25 0 25 50 75 100 125
Offset Supply Leakage Current (
Temperature (oC)
Figure 13A. Offset Supply Leakage Current
vs. Temperature
www.irf.com 11
Page 12
IRS2183/IRS21834(S)PbF
Figure 13B. Offset Supply Leakage Current
Max.
Supply Current (mA)
500
A)
!
400
300
250
A)
"
200
150
Max.
200
100
0
Offset Supply Leakage Current (
100 200 300 400 500 600
VB Boost Voltage (V)
vs. VB Boost Voltage
250
A)
#
200
150
100
Supply Current (
50
BS
V
0
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Min.
Max.
Typ.
100
Supply Curr ent (
50
B S
V
0
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 14A. VBS Supply Current
vs. Temperature
5
4
3
2
Max.
Typ.
1
CC
Min.
V
0
-50 -25 0 25 50 75 100 125 Temperature (oC)
Typ.
Min.
Figure 14B. VBS Supply Current
vs. VBS Floating Supply Voltage
www.irf.com 12
Figure 15A. VCC Supply Current
vs. Temperature
Page 13
IRS2183/IRS21834(S)PbF
Supply Current (mA)
Max.
Logic "0" Input Bias Current (µA)
Figure 17A. Logic "0" Input Bias Current
vs. Temperature
5
4
3
2
1
CC
V
0
10 12 14 16 18 20
VCC Supply Voltage (V)
Figure 15B. VCC Supply Current
vs. VCC Supply Voltage
120
A)
%
100
80 60
Max.
40
Typ.
20
0
Logic "1" Input Bias Current (
10 12 14 16 18 20
Supply Voltage (V)
Figure 16B. Logic "1" Input Bias Current
vs. Supply Voltage
120
A)
$
100
80 60 40
Typ.
20
0
Logic "1 " In p ut Bias Cu r r ent (
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 16A. Logic "1" Input Bias Current
vs. Temperature
6 5
Max 4 3 2
1 0
-50 -25 0 25 50 75 100 125 Temperature (°C)
www.irf.com 13
Page 14
IRS2183/IRS21834(S)PbF
UV Threshold ( +) (V)
Typ.
Undervoltage Threshold (-)
Output Sour ce Current (A)
Logic "0" Input Bias C ur r ent (µA)
6
Max
5 4 3
2 1 0
10 12 14 16 18 20
Supply Voltage (V)
Figure 17B. Logic "0" Input Bias Current
vs. Voltage
12 11 10
Max.
9
Typ.
UV Threshold (-) (V)
8
Min.
BS
7
and V
6
CC
V
-50 -25 0 25 50 75 100 125 Temperature (oC)
12 11
Max.
10
9
Min.
8
B S
7
and V
C C
6
V
-50 -25 0 25 50 75 100 125 Temperature (oC)
Figure 18. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
5
4
3
Typ.
2
Min.
1
0
-50 -25 0 25 50 75 100 125
Temperature (oC)
Figure 19. VCC and V
www.irf.com 14
BS
vs. Temperature
Figure 20A. Output Source Current
vs. Temperature
Page 15
IRS2183/IRS21834(S)PbF
5
4
3
2
Typ.
1
Min.
Output Source Current (A)
0
10 12 14 16 18 20
Supply Voltage (V)
Figure 20 B. Output Source Current
vs. Supply Voltage
5
4
3
2
Typ.
1
Min.
Output Sink Current (A)
0
10 12 14 16 18 20
Supply Voltage (V)
Fig u re 21 B. O utpu t Sink Current
vs. Supply Voltage
5.0
4.0
3.0
Typ.
2.0
Min.
Output Sink Current (A)
1.0
-50 -25 0 25 50 75 100 125 Temperature (
o
C)
Fig u re 21A. Ou t p ut Sink Current
vs. Temperature
140 120
C)
o
100
80 60
Temprature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 22. IRS2183 vs. Frequency (IRFBC20),
=33 Ω, VCC=15 V
R
gate
140 V
70 V 0 V
www.irf.com 15
Page 16
IRS2183/IRS21834(S)PbF
14 0
12 0
C)
o
10 0
80
60
Temperature (
40
20
1 10 100 1000
Frequency (kHz)
Figure 23. IRS2183 vs. Frequency (IRFBC30),
=22 Ω, VCC=15 V
R
gate
140
140 V
120
C)
o
100
80
140 V
70 V 0 V
70 V
0 V
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 10 0 1000
Frequency (kHz)
Figure 24. IRS2183 vs. Frequency (IRFBC40),
=15 Ω, VCC=15 V
R
gate
140 120
C)
o
100
80
140 V
70 V
0 V
60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 25. IR S2183 vs. Frequency (IRFPE50),
=10 Ω, VCC=15 V
R
gate
60
Temperature (
40 20
1 10 10 0 1000
Frequency (kHz)
Figure 26. IRS21834 vs. Frequency (IRFBC20),
=33 Ω, VCC=15 V
R
gate
140 V
70 V 0 V
www.irf.com 16
Page 17
IRS2183/IRS21834(S)PbF
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 27. IRS21834 vs. Frequency (IRFBC30),
=22 Ω, VCC=15 V
R
gate
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 29. IRS21834 vs. Frequency (IRFPE50),
R
=10 Ω, V
=15 V
140 V
70 V 0 V
140 V
70 V
0 V
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 28. IRS21834 vs. Frequency (IRFBC40),
=15 Ω, VCC=15 V
R
gate
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 30. IRS2183S vs. Frequency (IRFBC20),
=33 Ω, VCC=15 V
R
gate
140 V
70 V
0 V
140 V
70 V
0 V
www.irf.com 17
Page 18
IRS2183/IRS21834(S)PbF
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 31. IRS2183S vs. Frequency (IRFBC30),
=22 Ω, VCC=15 V
R
gate
140
140 V 70 V 0 V
120
C)
o
100
80 60
Tempreture (
40 20
1 10 100 1000
Frequency (kHz)
Figure 33. IRS2183S vs. Frequency (IRFPE50),
=10 Ω, VCC=15 V
R
gate
140 V
70 v
0 V
140
140 V 70 V
120
C)
o
100
80 60
Temperature (
40 20
1 10 10 0 1000
Frequency (kHz)
Figure 32. IRS2183S vs. Frequency (IRFBC40),
=15 Ω, VCC=15 V
R
gate
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 34. IRS21834S vs. Frequency (IRFBC20),
=33 Ω, VCC=15 V
R
gate
0 V
140 V
70 V 0 V
www.irf.com 18
Page 19
IRS2183/IRS21834(S)PbF
14 0
12 0
C)
o
10 0
80
60
Temperature (
40
20
1 10 100 1000
Frequency (kHz)
Figure 35. IRS21834S vs. Frequency (IRFBC30),
=22 Ω, VCC=15 V
R
gate
140 120
C)
o
100
80
140 V 70 V
140 V
70 V
0 V
0 V
140 120
C)
o
100
80 60
Temperature (
40 20
1 10 100 1000
Frequency (kHz)
Figure 36. IRS21834S vs. Frequency (IRFBC40),
=15 Ω, VCC=15 V
R
gate
140 V
70 V
0 V
60
Temperature (
40 20
1 10 10 0 1000
Frequency (kHz)
Figure 37. IRS21834S vs. Frequency (IRFPE50),
=10 Ω, VCC=15 V
R
gate
www.irf.com 19
Page 20
Case outlines
IRS2183/IRS21834(S)PbF
A
E
D B
5
87
6
6X
0.25 [ . 010 ]
65
H
4312
0.25 [ . 010 ] A
e
8X b
e1
A1
A
CAB
NOTES:
1. DIMENSI ONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONT ROLLING DIMENSION: MILLIM ETER
3. D IMENSIONS ARE SHOW N IN MILL IMETERS [INCHES].
4. OUTLI N E CONFORMS T O JEDE C OUT L INE MS-01 2 A A .
C
0.10 [ . 004 ]
8-Lead PDIP
6.46 [. 2 55]
3X 1.27 [. 05 0]
y
8-Lead SOIC
01-3003 01
DIM
FOOTPRINT
8X 0.72 [. 02 8]
8X 1.78 [. 07 0]
MIN MAX
.0532
A A1 b c .0075 .0098 0.19 0.25 D E e
e1
H K L y
.0688
.0040
.0098 .020
.013
.1968
.189
.1574
.1497 .050 BASIC .025 BASIC 0.635 BASIC .2284
.2440
.0099
.0196
.016
.050
K x 4 5°
8X L
8X c
7
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010].
7 DIMENSION IS THE LENGT H OF LEAD FOR SOLD ERING TO A SUBSTRATE.
01-0021 11
01-6014
(MS-001AB)
MILLIME TERSINCHES
MIN MAX
1.35
1.75
0.10
0.25
0.33
0.51
4.80
5.00
3.80
4.00
1.27 BASIC
5.80
6.20
0.25
0.50
0.40
1.27
01-6027
(MS-012AA)
www.irf.com 20
Page 21
IRS2183/IRS21834(S)PbF
14-Lead PDIP
01-3002 03
01-6010
(MS-001AC)
14-Lead SOIC (narrow body)
01-3063 00
01-6019
(MS-012AB)
www.irf.com 21
Page 22
Tape & Reel 8-lead SOIC
IRS2183/IRS21834(S)PbF
LOADED TAPE FEED DIRECTION
B
F
OTE : CONTROLLING IMENSION IN MM
CARRIER TAPE DIMENSION FOR 8SOICN
Code Min Max Min Max A 7.90 8.1 0 0.31 1 0.318 B 3.90 4.10 0.153 0.161 C 11.70 12.30 0.46 0.4 84 D 5 .4 5 5.55 0.21 4 0 .2 1 8 E 6.30 6.5 0 0.24 8 0.255 F 5 .1 0 5 .3 0 0.20 0 0 .2 0 8 G 1 .5 0 n/a 0.059 n/a H 1 .5 0 1.60 0.05 9 0 .0 6 2
F
E
G
H
REEL DIMENSIONS FOR 8SOICN Code Min Max Min Max
A 329.60 330.25 12.976 13.001 B 20.95 21.45 0.824 0.844 C 12.80 13.20 0.503 0.519 D 1 .9 5 2.45 0.76 7 0 .0 9 6 E 98.00 102.00 3.858 4.015 F n/a 18.40 n/a 0.724 G 14.50 17.10 0.570 0.673 H 12.40 14.40 0.488 0.566
Metr ic Im per i a l
C
Metr ic Im per i a l
A
A
E
G
B
D
H
D
C
A
www.irf.com 22
Page 23
IRS2183/IRS21834(S)PbF
Tape & Reel 14-lead SOIC
LOADED TAPE F E ED DIRECTION
B
A
A
F
OTE : CONTROLLING IMENSION IN MM
E
G
CARRIER TAPE DIMENSION FOR 14SOICN
Code Min Max Min Max A 7.90 8.1 0 0.31 1 0.318 B 3.90 4.10 0.153 0.161 C 15.70 16.30 0.618 0.641 D 7 .4 0 7.60 0.29 1 0 .2 9 9 E 6.40 6.6 0 0.25 2 0.260 F 9 .4 0 9 .6 0 0.37 0 0 .3 7 8 G 1 .5 0 n/a 0.059 n/a H 1 .5 0 1.60 0.05 9 0 .0 6 2
Metr ic Im per i a l
F
B
C
E
D
G
H
REE L DIM E NSIONS FO R 14SO IC N Code Min Max Min Max
A 329.60 330.25 12.976 13.001 B 20.95 21.45 0.824 0.844 C 12.80 13.20 0.503 0.519 D 1 .9 5 2.45 0.76 7 0 .0 9 6 E 98.00 102.00 3.858 4.015 F n/a 22.40 n/a 0.881 G 18.50 21.10 0.728 0.830 H 16.40 18.40 0.645 0.724
Metr ic Im per i a l
H
D
C
A
www.irf.com 23
Page 24
IRS2183/IRS21834(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
Date code
Pin 1 Identifier
?
MARKING CODE
P
Lead Free Released Non-Lead Free
Released
ORDER INFORMATION
8-Lead PDIP IRS2183PbF 8-Lead SOIC IRS2183SPbF
8-Lead SOIC Tape & Reel IRS2183STRPbF
S
IRxxxxxx
YWW?
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
14-Lead PDIP IRS21834PbF 14-Lead SOIC IRS21834SPbF
14-Lead SOIC Tape & Reel IRS21834STRPbF
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/27/2006
www.irf.com 24
The SOIC-14 is MSL3 qualified.
Loading...