Datasheet IRLZ44ZSPBF Datasheet

Features
Pulsed Drain C
t
c
Single Pulse Aval
gy
d
Single Pulse Aval
gy Tested Value
h
Aval
t
c
R
titive Aval
gy
g
g
l
Logic Level
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
l
Lead-Free
Description
This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.
G
TO-220AB
IRLZ44ZPbF
PD - 95539A
IRLZ44ZPbF
IRLZ44ZSPbF
IRLZ44ZLPbF
HEXFET® Power MOSFET
D
V
= 55V
DSS
S
D2Pak
IRLZ44ZSPbF
DS(on)
ID = 51A
= 13.5m
TO-262
IRLZ44ZLPbF
Absolute Maximum Ratings
ID @ TC = 25°C ID @ TC = 100°C I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Parameter Units
Continuous Drain Current, V Continuous Drain Current, V
urren
Power Dissipation W
Linear Derating Factor W/°C Gate-to-Source Voltage V
anche Curren
epe
Operating Junction and Storage Temperature Range°C
Soldering Temperature, for 10 seconds Mountin
anche Ener anche Ener
anche Ener
Torque, 6-32 or M3 screw
GS
GS
@ 10V @ 10V
i
(Silicon Limited)
See Fig.12a, 12b, 15, 16
300 (1.6mm from case )
Max.
204
0.53
± 16
110
-55 to + 175
y
10 lbf
in (1.1Nym)
51 36
80
78
A
mJ
A
mJ
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
k
ik
ik
jk
––– 1.87 °C/W
0.50 –––
––– 62
––– 40
www.irf.com 1
10/01/10
IRLZ44Z/S/LPbF
El
l Ch
@ T
= 25°C (unl
ified)
/
g
g
(
)
ectrica
aracteristics
J
ess otherwise spec
Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
fs Forward Transconductance 27 ––– ––– V
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Drain-to-Source Breakdown Voltage55––––V
T
Breakdown Voltage Temp. Coefficient ––– 0.05 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 11 13.5
––– ––– 20 ––– ––– 22.5
Gate Threshold Voltage 1.0 ––– 3.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 nA Gate-to-Source Reverse Leaka
e ––– ––– -200 Total Gate Charge ––– 24 36 Gate-to-Source Charge ––– 7.5 ––– nC Gate-to-Drain ("Miller") Charge–12– Turn-On Delay Time ––– 14 ––– Rise Time ––– 160 ––– Turn-Off Delay Time ––– 25 ––– ns Fall Time ––– 42 ––– Internal Drain Inductance ––– 4.5 ––– Between lead,
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 1620 ––– Output Capacitance ––– 230 ––– Reverse Transfer Capacitance ––– 130 ––– pF Output Capacitance ––– 860 ––– Output Capacitance ––– 180 ––– Effective Output Capacitance ––– 280 –––
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current ––– ––– 51
(Body Diode) A Pulsed Source Current ––– ––– 204
Body Diode
c
Diode Forward Voltage–1.3V Reverse Recovery Time –2132ns Reverse Recovery Charge ––– 16 24 nC Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VGS = 0V, ID = 250µA Reference to 25°C, I
m
V
= 10V, ID = 31A
GS
m
V
= 5.0V, ID = 30A
GS
m
VGS = 4.5V, ID = 15A
D
e
e e
VDS = VGS, ID = 250µA
= 25V, ID = 31A
V
DS
V
= 55V, VGS = 0V
DS
V
= 55V, VGS = 0V, TJ = 125°C
DS
= 16V
V
GS
V
= -16V
GS
= 31A
I
D
V
= 44V
DS
VGS = 5.0V
e
VDD = 50V I
= 31A
D
R
= 7.5
G
VGS = 5.0V
e
nH 6mm (0.25in.)
and center of die contact VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz V
= 0V, VDS = 44V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 44V
GS
Conditions
MOSFET symbol
showing the integral reverse
p-n junction diode. T
= 25°C, IS = 31A, VGS = 0V
J
TJ = 25°C, IF = 31A, VDD = 28V di/dt = 100A/µs
e
= 1mA
D
G
S
f
e
2 www.irf.com
IRLZ44Z/S/LPbF
1000
) A
( t
100
n e
r
r u
C e
c
r
10
u o S
­o
t
­n
i a
r
1
D ,
D
I
3.0V
TOP 15V
BOTTOM 3.0V
60µs PULSE WIDTH
Tj = 25°C
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000.0
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
1000
TOP 15V
100
BOTTOM 3.0V
10
D
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
60µs PULSE WIDTH
Tj = 175°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
60
)
Α
(
t n e
r
r
100.0
u C e
c
r u o S
­o
t
-
10.0
n
i a
r D
,
D
I
1.0
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TJ = 25°C
TJ = 175°C
V
= 20V
DS
60µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
) S
( e
c n a
t c
40
u d n o c s n a
r T
d
r a
20
w
r o F , s
f G
V
DS
TJ = 175°C
TJ = 25°C
= 10V
380µs PULSE WIDTH
0
0 1020304050
ID, Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
IRLZ44Z/S/LPbF
2500
2000
) F p
( e
1500
c n a
t
i c a p
1000
a C
, C
500
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
gs
gd
ds
Ciss
Coss
Crss
+ Cgd, C
+ C
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
( t
100.0
n e
r
r u
C n
i a
r
10.0
D e
s
r e v e
R ,
D S
I
TJ = 175°C
TJ = 25°C
1.0
0.1
0.2 0.6 1.0 1.4 1.8
VSD, Source-to-Drain Voltage (V)
12
SHORTED
ds
gd
ID= 31A
) V
10
( e
g a
t
l o
8
V e
c
r u
6
o S
­o
t
­e
t
4
a G
,
S G
2
V
0
0 1020304050
VDS= 44V
VDS= 28V VDS= 11V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
1000
) A
( t
100
n e
r
r u
C e
c
r u
10
o S
­o
t
­n
i a
r D
1
,
Tc = 25°C
D
I
Tj = 175°C Single Pulse
0.1 1 10 100 1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
IRLZ44Z/S/LPbF
τ
60
50
) A
(
40
t n e
r
r u
C
30
n
i a
r D
,
20
D
I
10
0
25 50 75 100 125 150 175
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10
2.5
e c n a
t s
i s e
R n O e
)
c
d
r
e
u
z
i
o
l
S
a
­m
o
t
r
-
o
n
i
N
(
a
r D
,
) n o
( S D
R
ID = 30A
V
= 5.0V
GS
2.0
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
)
C
1
J h
t
Z (
e s n o p s e
R l a
m
r e h T
0.001
D = 0.50
0.20
R
R
R
2
3
R
2
2
τ
2
Ri (°C/W) τi (sec)
R
3
τ
C
τ
0.736 0.000345
3
0.687 0.00147
τ
3
0.449 0.007058
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.1
0.01
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
τ
1
Ci= τi/Ri
1
R
1
τ
SINGLE PULSE ( THERMAL RESPONSE )
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
IRLZ44Z/S/LPbF
A
15V
L
D.U.T
I
AS
0.01
t
p
R
20V
V
V
DS
G
GS
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
DRIVER
+
V
-
DD
320
) J
m
( y
g
r e
240
n E
e h c n a
l a v
160
A e
s
l u P
e
l g
80
n
i S
, S A
E
0
25 50 75 100 125 150 175
I
TOP
5.7A
BOTTOM
Starting TJ, Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
D
3.7A
31A
10 V
Q
GS
V
G
Fig 13a. Basic Gate Charge Waveform
0
1K
Fig 13b. Gate Charge Test Circuit
Q
GD
Charge
DUT
3.0
) V
(
2.5
e g a
t
l o V
d
l
2.0
o h s e
r h
t
1.5
e
t a
G
) h
t
(
1.0
S
L
VCC
G
V
0.5
-75 -50 -25 0 25 50 75 100 125 150 175
ID = 250µA
TJ , Temperature ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
IRLZ44Z/S/LPbF
1000
Duty Cycle = Single Pulse
100
) A
( t n e
r
r u
C
10
e h c n a
l a v A
1
0.1
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
100
TOP Single Pulse
) J
80
m
( y
g
r e n
60
E e
h c n a
l
40
a v
A ,
R A
20
E
BOTTOM 1% Duty Cycle ID = 31A
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
2. Safe operation in Avalanche is allowed as long asT not exceeded.
. This is validated for
jmax
jmax
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
AS (AR)
= P
·f
av
D (ave)·tav
thJC
www.irf.com 7
is
IRLZ44Z/S/LPbF
Reverse Recovery Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Current
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
di/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
+
-
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
R
D.U.T.
D
+
V
DD
-
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 18b. Switching Time Waveforms
8 www.irf.com
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
IRLZ44Z/S/LPbF
TO-220AB Part Marking Information
TH IS IS AN IRF1010 EXAMPLE:
LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
Note: "P" inass embly line position
indicates "Lead - Free"
INTERNAT IONAL
RECTIFIER
LOGO
AS S E MB L Y LOT CODE
TO-220AB packages are not recommended for Surface Mount Application.
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com 9
PAR T NUMBER
DATE CODE YE AR 7 = 1997 WE EK 19 LINE C
IRLZ44Z/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WITH LOT CODE 8024
ASS EMBL ED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"
INTER NATIONAL
RECTIF IER
LOGO
ASSEMBLY LOT CODE
F530S
OR
INTER NATIONAL
RECTIFIE R
LOGO
AS S E MB L Y LOT CODE
F5 30S
PART NUMBER
DATE CODE P = DESIGNATES LEAD - FREE
PRODUCT (OPTIONAL ) YEAR 0 = 2000 WEE K 02 A = AS S E MBL Y S I T E CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10 www.irf.com
PART NUMBER
DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IRLZ44Z/S/LPbF
TO-262 Part Marking Information
EXAMPLE : T HIS IS AN IR L3103L
LOT CODE 1789 ASS EMBL ED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
INTE RNATIONAL
RECTIFIER
LOGO
AS S E MB L Y LOT CODE
OR
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY LOT CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com 11
PART NUMBER
DATE CODE YEAR 7 = 1 997 WEEK 19 LINE C
PART NU MBE R
DAT E CODE P = DE S IGNAT E S L EAD -F RE E
PRODUCT (OPTIONAL) YEAR 7 = 1997 WEE K 19 A = ASSEMBLY SITE CODE
IRLZ44Z/S/LPbF
D2Pak Tape & Reel Infomation
TRR
FEED DIRECTION
TRL
FEED DIRECTION
1.85 (.073)
1.65 (.065)
10.90 (.429)
10.70 (.421)
4.10 (.161)
3.90 (.153)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
16.10 (.634)
15.90 (.626)
1.60 (.063)
1.50 (.059)
1.75 (.069)
1.25 (.049)
15.42 (.609)
15.22 (.601)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
4.72 (.136)
4.52 (.178)
330.00 (14.173) MAX.
NOTES :
1. CO MFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
 Limited by T
RG = 25, I
, starting TJ = 25°C, L = 0.166mH
Jmax
= 31A, VGS =10V. Part not
AS
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%. C
eff. is a fixed capacitance that gives the
oss
same charging time as C from 0 to 80% V
DSS
.
oss
while V
is rising
DS
This product has been designed and qualified for the Industrial market.
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
60.00 (2 .362) MIN.
30.40 (1.197) MAX.
4
3
Limited by T
26.40 (1.039)
24.40 (.961)
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is only applied to TO-220AB pakcage.This is applied to D
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
R
is measured at TJ approximately 90°C
θ
2
Pak, when mounted on 1" square PCB (FR-
Data and specifications subject to change without notice.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
12 www.irf.com
Loading...