Datasheet IRF740 Datasheet (Intersil)

Page 1
IRF740
Data Sheet July 1999
10A, 400V, 0.550 Ohm, N-Channel Power MOSFET
This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy inthe breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. They can be operated directly from integrated circuits.
Formerly developmental type TA17424.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF740 TO-220AB IRF740
NOTE: When ordering, include the entire part number.
File Number
Features
• 10A, 400V
•r
DS(ON)
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 0.550
Components to PC Boards”
Symbol
D
G
2311.3
Packaging
DRAIN
(FLANGE)
JEDEC TO-220AB
TOP VIEW
SOURCE
DRAIN
GATE
S
4-239
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
IRF740
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF740 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DS
DGR
400 V 400 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID 10 A
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
DM
GS
D
6.3 A 40 A
±20 V
125 W
Linear Derating Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
520 mJ
-55 to 150
300
260
o
C
o
C
o
C
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate to Threshold Voltage V
GS(TH)VGS
Zero Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)
Gate to Source Leakage Current I
Drain to Source On Resistance (Note 2) r
DS(ON)VGS
Forward Transconductance (Note 2) g Turn-On Delay Time t
D(ON)
Rise Time t Turn-Off Delay Time t
D(OFF)
Fall Time t Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse-Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSSVGS
DSS
GSS
fs
r
f
gs gd
ISS OSS RSS
D
S
θCS
θJA
= 0V, ID = 250µA (Figure 10) 400 - - V
= VDS, ID = 250µA 2.0 - 4.0 V VDS = Rated BV VDS = 0.8 x Rated BV VDS> I
D(ON) xrDS(ON)MAX
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ = 125oC - - 250 µA
DSS
, VGS = 10V 10 - - A
VGS = ±20V - - ±500 nA
= 10V, ID = 5.2A (Figures 8, 9) - 0.47 0.550 VDS≥ 50V, ID = 5.2A (Figure 12) 5.8 8.9 - S VDD= 200V, ID≈ 10A, RG = 9.1,
RL = 20, VGS = 10V MOSFET Switching Times are Essentially Independent of Operating Temperature
-1521ns
-2541ns
-5275ns
-2536ns
= 10V, ID = 10A, VDS = 0.8 x Rated BV I
= 1.5mA (Figure 14)
g(REF)
DSS
Gate Charge is Essentially Independent of Operating Temperature
-4163nC
- 6.5 - nC
-23-nC
VGS = 0V, VDS = 25V, f = 1.0MHz (Figure 11) - 1250 - pF
- 300 - pF
-80-pF
Measured From the Contact Screw on Tab to Center of Die
MeasuredFrom the Drain Lead, 6mm (0.25in) From Package to Center of Die
Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad
Modified MOSFET Symbol Showing the Internal Devices Inductances
D
L
D
G
L
S
S
- 3.5 - nH
- 4.5 - nH
- 7.5 - nH
- - 1.0
o
C/W
Free Air Operation - - 62.5oC/W
4-240
Page 3
IRF740
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current
I
SDM
SD
(Note 3)
Source to Drain Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovered Charge Q
NOTES:
2. Pulse Test: Pulse width 300µs, duty cycle 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 9.1µH, RG = 25, peak IAS = 10A.
Modified MOSFET Symbol Showing the Integral Reverse
D
- - 10 A
- - 40 A
P-N Junction Diode
G
S
TJ = 25oC, ISD= 10A, VGS = 0V (Figure 13) - - 2.0 V
SD
TJ = 25oC, ISD = 10A, dISD/dt = 100A/µs 170 390 790 ns
rr
TJ = 25oC, ISD = 10A, dISD/dt = 100A/µs 1.6 4.5 8.2 µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
1
0.5
0.2
0.1
0.1
0.05
0.02
10
, TRANSIENT THERMAL IMPEDANCE
θJC
Z
10
0.01
-2
-3
-5
10
SINGLE PULSE
-4
10
10
10
8
6
4
DRAIN CURRENT (A)
D,
I
2
0
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
-3
, RECTANGULAR PULSE DURATION (S)
t
1
-2
10
50 75 10025 150
TC, CASE TEMPERATURE (oC)
125
CASE TEMPERATURE
P
DM
t
1
t
t
2
NOTES: DUTY FACTOR: D = t1/t
PEAK T
0.1 1 10
= PDMx Z
J
2
θJC
2
+ T
C
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
4-241
Page 4
IRF740
Typical Performance Curves
100
10
1
, DRAIN CURRENT (A)
D
I
T TC = 150oC SINGLE PULSE
0.1 110
OPERATION IN THIS REGION IS LIMITED BY r
DS(ON)
= 25oC
C
VDS, DRAIN TO SOURCE VOLTAGE (V)
Unless Otherwise Specified (Continued)
15
10µs
100µs
1ms
10ms
DC
2
10
3
10
12
9
6
, DRAIN CURRENT (A)
D
I
3
0
= 10V
V
GS
VGS = 6.0V
40 80 120 1600
V
DS,
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 5.5V
VGS = 5.0V
VGS = 4.5V
VGS = 4.0V
DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
15
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
12
9
6
, DRAIN CURRENT (A)
D
I
3
0
2468010 V
DS,
VGS = 10V
DRAIN TO SOURCE VOLTAGE (V)
VGS = 6.0V
VGS = 5.5V
VGS = 5.0V
VGS = 4.5V
VGS = 4.0V
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
50V
V
DS
10
1
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0.1 0246810
TJ = 150oC
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 25oC
200
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
4
3
2
, DRAIN TO SOURCE
ON RESISTANCE
DS(ON)
1
r
0
10 20 3025 50
TC, CASE TEMPERATURE (oC)
VGS = 10V
VGS = 20V
40
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
3.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX I
= 10A, VGS = 10V
D
2.4
1.8
1.2
0.6
ON RESISTANCE VOLTAGE
NORMALIZED DRAIN TO SOURCE
0
-40 60 16012080400-60 -20
20
T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4-242
100
140
Page 5
IRF740
Typical Performance Curves
1.25 ID = 250µA
1.15
1.05
0.95
BREAKDOWN VOLTAGE
0.85
NORMALIZED DRAIN TO SOURCE
0.75
-40 60 16012080400-60 -20
20
T
, JUNCTION TEMPERATURE (oC)
J
Unless Otherwise Specified (Continued)
100
140
FIGURE 10. NORMALIZED DRAIN TOSOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
15
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
V
50V
DS
12
TJ = 25oC
9
TJ = 150oC
6
, TRANSCONDUCTANCE (S)
3
fs
g
0
4 8 12 16020
ID, DRAIN CURRENT (A)
2500
2000
1500
1000
C, CAPACITANCE (pF)
500
0
1
C
OSS
C
RSS
25
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz C
= CGS + C
ISS
C
= C
RSS
C
C
OSS
C
ISS
2
5225
10
GD
DS
+ C
GD
GD
10
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
10
TJ = 150oC
TJ = 25oC
1.0
, SOURCE TO DRAIN CURRENT (A)
SD
I
0.1 0 0.3 0.6 0.9 1.5
VSD, SOURCE TO DRAIN VOLTAGE (V)
1.2
3
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
ID = 10A
16
VDS = 80V
12
8
4
GATE TO SOURCE VOLTAGE (V)
GS,
V
0
12 24 36 48060
VDS = 200V
VDS = 320V
Qg,GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
4-243
Page 6
IRF740
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
t
P
I
AS
t
AV
V
DS
V
DD
R
G
V
GS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
CURRENT
REGULATOR
12V
BATTERY
0
0.2µF
50k
I
G(REF)
0.3µF
G
IG CURRENT
SAMPLING
RESISTOR RESISTOR
R
L
DUT
D
S
I
D
SAMPLING
+
V
DD
-
V
DS
(ISOLATED SUPPLY)
SAME TYPE AS DUT
DUT
V
DS
CURRENT
t
ON
t
d(ON)
t
V
DS
90%
0
V
GS
10%
0
r
10%
50%
PULSE WIDTH
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DD
Q
g(TOT)
Q
gd
Q
gs
V
DS
0
I
G(REF)
0
t
d(OFF)
90%
V
GS
t
OFF
50%
t
f
90%
10%
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
4-244
Page 7
IRF740
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly , the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
4-245
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...