Datasheet IRF2903Z Datasheet (International Rrectifier)

Page 1
查询IRF2903Z供应商
PD - 96988A
AUTOMOTIVE MOSFET
IRF2903ZS
IRF2903ZL
IRF2903Z
Features
l Advanced Process Technology l Ultra Low On-Resistance l 175°C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax
G
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on­resistance per silicon area. Additional features of this design are a 175°C junction operating tempera­ture, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C
ID @ TC = 100°C
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
c
@ 10V (Silicon Limited)
GS
@ 10V (Silicon Limited)
GS
@ 10V (Package Limited)
GS
d
g
i
D
TO-220AB
IRF2903Z
GDS
Gate Drain Source
h
Thermal Resistance
Parameter Typ. Max.
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount, steady state)
k
i
ik
jk
www.irf.com 1
HEXFET® Power MOSFET
D
S
D
S
D
G
D2Pak
IRF2903ZS
See Fig.12a, 12b, 15, 16
-55 to + 175
300 (1.6mm from case )
10 lbf
––– 0.51
0.50 –––
––– 62
––– 40
V
R
DS(on)
S
D
G
Max.
260
180
75
1020
290
2.0
± 20
290
820
y
in (1.1Nym)
= 30V
DSS
= 2.4m
I
= 75A
D
D
IRF2903ZL
G
TO-262
A
W
W/°C
V
mJ
A
mJ
°C
Units
°C/W
S
D
8/26/05
Page 2
IRF2903Z/S/L
(BR)
(BR)
)
)
g
g
g
)
)
S
S
S
r
r
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
DSS
V
DSS
R
DS(on
V
GS(th
gfs Forward Transconductance 120 ––– ––– S I
DSS
I
GSS
Q Q
s
Q
d
t
d(on
t
r
t
d(off
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Source-Drain Ratings and Characteristics
I
I
M
V
D
t
r
Q
r
t
on
Drain-to-Source Breakdown Voltage 30 ––– ––– V
/T
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 1.9 2.4
m
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 nA Gate-to-Source Reverse Leakage ––– ––– -200 Total Gate Charge ––– 160 240 Gate-to-Source Charge ––– 51 ––– nC Gate-to-Drain ("Miller") Charge ––– 58 ––– Turn-On Delay Time ––– 24 ––– Rise Time ––– 100 ––– Turn-Off Delay Time ––– 48 ––– ns Fall Time ––– 37 ––– Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 6320 ––– Output Capacitance ––– 1980 ––– Reverse Transfer Capacitance ––– 1100 ––– pF Output Capacitance ––– 5930 ––– Output Capacitance ––– 2010 ––– Effective Output Capacitance ––– 3050 –––
Parameter Min. Typ. Max. Units
Continuous Source Current ––– ––– 75 (Body Diode) A Pulsed Source Current ––– ––– 1020 (Body Diode) Diode Forward Voltage ––– ––– 1.3 V Reverse Recovery Time ––– 34 51 ns Reverse Recovery Charge ––– 29 44 nC Forward Turn-On Time
c
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VGS = 0V, ID = 250µA Reference to 25°C, I
= 10V, ID = 75A
V
GS
= 1mA
D
e
VDS = VGS, ID = 150µA VDS = 10V, ID = 75A V
= 30V, VGS = 0V
DS
= 30V, VGS = 0V, TJ = 125°C
V
DS
V
= 20V
GS
= -20V
V
GS
I
= 75A
D
= 24V
V
DS
VGS = 10V
e
VDD = 15V
= 75A
I
D
= 3.2
R
G
VGS = 10V
e
and center of die contact VGS = 0V
= 25V
V
DS
ƒ = 1.0MHz
= 0V, VDS = 1.0V, ƒ = 1.0MHz
V
GS
= 0V, VDS = 24V, ƒ = 1.0MHz
V
GS
= 0V, VDS = 0V to 24V
V
GS
f
Conditions
MOSFET symbol showing the integral reverse p-n junction diode.
= 25°C, IS = 75A, VGS = 0V
T
J
TJ = 25°C, IF = 75A, VDD = 15V di/dt = 100A/µs
e
e
2 www.irf.com
Page 3
IRF2903Z/S/L
1000
) A
( t n e
r
r
100
u C e
c
r u o S
­o
t
­n
10
i a
r D
,
D
I
4.5V
TOP 15V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
1
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
1000.0
)
Α
(
t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
100.0
TJ = 175°C
10.0
1.0
0.1
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TJ = 25°C
V
= 25V
DS
60µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
) A
( t n e
r
r u
C e
c
r u
100
o S
­o
t
­n
i a
r D
,
D
I
4.5V
TOP 15V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 175°C
10
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
240
) S
(
200
e c n a
t c
160
u d n o c s n
120
a
r T
d
r a
80
w
r o F , s
f
40
G
V
DS
380µs PULSE WIDTH
0
0 20 40 60 80 100 120 140 160 180
ID, Drain-to-Source Current (A)
TJ = 175°C
= 10V
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
TJ = 25°C
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
Page 4
IRF2903Z/S/L
) F p
( e
c n a
t
i c a p a
C ,
C
12000
10000
8000
6000
4000
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
C
C
Ciss
Coss
Crss
+ Cgd, C
+ C
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
( t
100.0
n e
r
r u
C n
i a
r D e
s
r e v e
R ,
D S
I
TJ = 175°C
10.0
TJ = 25°C
1.0
0.1
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
20
SHORTED
ds
gd
) V
( e
g a
t
l o V
e c
r u o S
­o
t
­e
t a
G ,
V
ID= 75A
16
12
8
S
4
G
VDS= 24V
VDS= 15V
0
0 40 80 120 160 200 240
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
10000
) A
(
1000
t n e
r
r u
C
100
e c
r u o S
­o
t
­n
i a
r D
,
D
I
LIMITED BY PACKAGE
10
1
Tc = 25°C Tj = 175°C Single Pulse
0.1
0.1 1.0 10.0 100.0
OPERATION IN THIS AREA LIMITED BY RDS(on)
1msec
V
, Drain-toSource Voltage (V)
DS
100µsec
10msec
DC
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF2903Z/S/L
τ
300
LIMITED BY PACKAGE
250
) A
( t
200
n e
r
r u
C
150
n
i a
r D
,
100
D
I
50
0
25 50 75 100 125 150 175
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
2.0
e c n a
t s
i s e
R n O e
c
r u o S
­o
t
­n
i a
r D
,
) n o
( S D
R
ID = 75A
V
= 10V
GS
1.5
) d e z
i
l a
m
r o
N
(
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
)
C J h
t Z (
e s n o p s e
R l a
m
r e h T
0.001
D = 0.50
0.1
0.01
1E-006 1E-005 0.0001 0.001 0.01 0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
τ
J
τ
J
τ
1
τ
1
Ci= τi/Ri
R
R
1
R
1
τ
R
2
3
R
2
2
τ
2
Ri (°C/W) τi (sec)
R
3
τ
C
τ
0.08133 0.000044
3
0.2408 0.000971
τ
3
0.18658 0.008723
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF2903Z/S/L
A
15V
L
D.U.T
I
AS
0.01
t
p
R
V
20V
V
DS
G
GS
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
DRIVER
+
-
V
DD
1200
) J
m
( y
1000
g
r e n E
e
800
h c n a
l a v
600
A e
s
l u P
400
e
l g n
i S
200
, S A
E
0
25 50 75 100 125 150 175
I
TOP
42A
BOTTOM
Starting TJ, Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
D
26A
75A
10 V
Q
GS
V
G
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
.2µF
12V
V
GS
Fig 13b. Gate Charge Test Circuit
Q
GD
Charge
50K
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
4.5
ID = 1.0A
) V
4.0
( e
g a
t
l
3.5
o V
d
l o
3.0
h s e
r h
t
2.5
e
t a
G
)
2.0
h
t
( S G
1.5
+
V
DS
-
V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175
ID = 1.0mA
ID = 250µA ID = 150µA
TJ , Temperature ( °C )
I
D
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
1000
IRF2903Z/S/L
Duty Cycle = Single Pulse
) A
(
100
t n e
r
r u
C e
h c n a
l a
10
v A
1
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
300
TOP Single Pulse
250
) J
m
( y
g
200
r e n E
e h
150
c n a
l a v A
100
,
R A
E
50
0
25 50 75 100 125 150 175
BOTTOM 1% Duty Cycle ID = 75A
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
. This is validated for
jmax
every part type.
2. Safe operation in Avalanche is allowed as long asT not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
= Average power dissipation per single
D (ave)
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
·f
av
jmax
is
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
Fig 16. Maximum Avalanche Energy
Vs. Temperature
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
www.irf.com 7
Page 8
IRF2903Z/S/L
Reverse Recovery Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
+
-
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
R
D.U.T.
D
+
V
DD
-
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 18b. Switching Time Waveforms
8 www.irf.com
Page 9
TO-220AB Package Outline
IRF2903Z/S/L
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789 AS S E MBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"
Note: "P" in as s embly line position
i ndi cates " L ead - F r ee"
TO-220AB package is not recommended for Surface Mount Application.
INTERNATIONAL
RECTIF IER
LOGO
ASSEMBLY LOT CODE
www.irf.com 9
PART NUMBER
DATE CODE YEAR 0 = 2000 WEEK 19 LINE C
Page 10
IRF2903Z/S/L
2
D
Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
T HIS IS AN IRF 530S WIT H LOT CODE 8024
ASS EMBLE D ON WW 02, 2000 IN THE ASSEMBLY LINE "L"
Note: "P" in ass embly line posi tion indicates "Lead-F ree"
INTE RNATIONAL
RECTIF IER
LOGO
ASSEMBLY LOT CODE
F530S
OR
INTE RNATIONAL
RECTIFIER
LOGO
ASSEMBLY LOT CODE
10 www.irf.com
F530S
PART NUMBER
DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
PART NUMBER
DATE CODE
P = D ES I GN AT ES L E AD- F RE E
PRODUCT (OPTIONAL )
YEAR 0 = 2000 WEEK 02
A = ASSEMBLY SITE CODE
Page 11
IRF2903Z/S/L
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-262 Part Marking Information
TH IS I S AN IRL 3103L
EXAMPLE:
LOT CODE 1789 ASS EMBL ED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
Note: "P" in assembly line pos i tio n in dicates "L ead-F r ee"
INTERNATIONAL
RECTIFIE R
LOGO
AS S E MB L Y LOT CODE
PART NUMBER
DATE CODE YEAR 7 = 1997 WE EK 19 LINE C
OR
INTERNATIONAL
RECTIFIE R
LOGO
AS S E MB L Y LOT CODE
www.irf.com 11
PART NUMBER
DATE CODE P = DE S IGN ATE S L EAD -F RE E
PRODUCT (OPTIONAL)
YEAR 7 = 1997 WEEK 19
A = AS S E MB LY SI T E COD E
Page 12
IRF2903Z/S/L
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION
TRL
FEED DIRECTION
1.85 (.073)
1.65 (.065)
10.90 (.429)
10.70 (.421)
11.60 (.457)
11.40 (.449)
16.10 (.634)
15.90 (.626)
1.60 (.063)
1.50 (.059)
1.75 (.069)
1.25 (.049)
15.42 (.609)
15.22 (.601)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
4.72 (.136)
4.52 (.178)
13.50 (.532)
12.80 (.504)
330.00 (14.173) MAX.
NOTES :
1. COMFOR MS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
 Limited by T
RG = 25, I
, starting TJ = 25°C, L = 0.10mH
Jmax
= 75A, VGS =10V. Part not
AS
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%. C
eff. is a fixed capacitance that gives the
oss
same charging time as C from 0 to 80% V
DSS
.
oss
while V
DS
is rising
This product has been designed and qualified for the Automotive [Q101]market.
27.40 (1.079)
23.90 (.941)
4
60.00 (2.362) MIN.
30.40 (1.197) MAX.
4
3
, see Fig.12a, 12b, 15, 16 for typical repetitive
Limited by T
26.40 (1.039)
24.40 (.961)
Jmax
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is only applied to TO-220AB pakcage.This is applied to D
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
R
is measured at TJ approximately 90°C
θ
2
Pak, when mounted on 1" square PCB (FR-
Data and specifications subject to change without notice.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/05
12 www.irf.com
Loading...