Page 1
查询IRF2805L供应商
Typical Applications
● Climate Control
● ABS
● Electronic Braking
● Windshield Wipers
Features
● Advanced Process Technology
● Ultra Low On-Resistance
● 175°C Operating Temperature
● Fast Switching
● Repetitive Avalanche Allowed up to Tjmax
Description
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per
silicon area. Additional features of this product are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety
of other applications.
Absolute Maximum Ratings
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 135V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 96V A
I
DM
PD @TC = 25°C Power Dissipation 200 W
V
GS
E
AS
E
(6 sigma) Single Pulse Avalanche Energy Tested ValueX 1220
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt S 2.0 V/ns
T
J
T
STG
Thermal Resistance
R
θ JC
R
θ JA
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com 1
PD - 94428
IRF2805S
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
D
G
S
D2Pak
IRF2805S
Parameter Max. Units
Pulsed Drain Current Q 700
Linear Derating Factor 1.3 W/°C
Gate-to-Source Voltage ± 20 V
Single Pulse Avalanche EnergyR 380 mJ
Avalanche CurrentQ See Fig.12a, 12b, 15, 16 A
Repetitive Avalanche EnergyW mJ
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Parameter Typ. Max. Units
Junction-to-Case ––– 0.75
Junction-to-Ambient(PCB Mounted, steady state)** ––– 40
IRF2805L
V
= 55V
DSS
R
= 4.7mΩ
DS(on)
ID = 135AV
TO-262
IRF2805L
°C
°C/W
06/10/02
Page 2
IRF2805S/IRF2805L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆ V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance U ––– 1600 ––– V GS = 0V, VDS = 0V to 44V
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
R Starting T
RG = 25Ω , I
S I
SD
TJ ≤ 175°C
T Pulse width ≤ 400µs; duty cycle ≤ 2%.
2 www.irf.com
Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA
/∆ T
Breakdown Voltage Temp. Coefficient ––– 0.06 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 3.9 4.7 mΩ V GS = 10V, ID = 104A T
Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
Forward Transconductance 91 ––– ––– S VDS = 25V, ID = 104A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 55V, VGS = 0V
µA
nA
VGS = -20V
Total Gate Charge ––– 150 230 ID = 104A
Gate-to-Source Charge ––– 38 57 nC VDS = 44V
Gate-to-Drain ("Miller") Charge ––– 52 78 VGS = 10VT
Turn-On Delay Time ––– 14 ––– VDD = 28V
Rise Time ––– 120 ––– ID = 104A
Turn-Off Delay Time ––– 68 ––– RG = 2.5Ω
ns
Fall Time ––– 110 ––– VGS = 10V T
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact
Input Capacitance ––– 5110 ––– VGS = 0V
Output Capacitance ––– 1190 ––– pF VDS = 25V
Reverse Transfer Capacitance ––– 210 ––– ƒ = 1.0MHz, See Fig. 5
Output Capacitance ––– 6470 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 860 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode) Q
––– –––
––– –––
175V
700
showing the
A
p-n junction diode.
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 104A, VGS = 0VT
Reverse Recovery Time ––– 80 120 ns TJ = 25°C, IF = 104A
Reverse Recovery Charge ––– 290 430 nC di/dt = 100A/µs
T
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
U C
eff. is a fixed capacitance that gives the same charging time
oss
= 25°C, L = 0.08mH
J
= 104A. (See Figure 12).
AS
≤ 104A, di/dt ≤ 240A/µs, V
DD
≤ V
(BR)DSS
as C
V Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
W Limited by T
,
avalanche performance.
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
.
X This value determined from sample failure population. 100%
tested to this value in production.
G
G
D
S
D
S
Page 3
IRF2805S/IRF2805L
1000
100
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.5V
10
, Drain-to-Source Current (A)
D
I
20µs PULSE WIDTH
1
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
TJ = 25°C
A)
TJ = 175°C
1000
100
, Drain-to-Source Current (A)
D
I
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
10
0.1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
175A
I =
D
2.5
2.0
100
, Drai n-to-Sour c e Current
D
I
10
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V
= 25V
DS
20µs PULSE W IDTH
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
Vs. Temperature
www.irf.com 3
Page 4
IRF2805S/IRF2805L
10000
8000
6000
4000
C, Capacitance (pF)
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
SHORTED
C
= C
rss
C
= C
oss
VDS, Dr ain-to-Sour ce Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
TJ = 175°C
100.0
gd
ds
gs
+ C
Ciss
Cos s
Crss
gd
+ Cgd, C
ds
20
ID= 104A
16
12
8
, Gate-to-So urce Voltage (V)
4
GS
V
0
0 40 80 120 160 200 240
Q
VDS= 44V
VDS= 28V
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
1000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
, Drain-to-Source Current (A)
D
I
100
10
Tc = 25°C
Tj = 175°C
Singl e P ulse
1
1 10 100 1000
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 8. Maximum Safe Operating Area
10.0
, Reverse Drain Current (A)
I
1.0
SD
0.1
0.2 0.4 0.6 0.8 1. 0 1.2 1.4 1. 6 1.8
VSD, Source-toDrain Voltage (V)
TJ = 25°C
Fig 7. Typical Source-Drain Diode
V
GS
= 0V
Forward Voltage
4 www.irf.com
Page 5
IRF2805S/IRF2805L
140
LIMITED BY PACKAGE
120
100
80
60
D
40
I , Drain Current (A)
20
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
R
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
D
D.U.T.
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)tr
t
d(off)tf
Fig 10b. Switching Time Waveforms
V
DD
D = 0.50
thJC
0.20
0.1
0.10
P
0.05
Thermal Response (Z )
0.02
0.01
0.01
0.00001 0.0001 0.001 0.01 0.1 1
SINGLE PULSE
THERMAL RESPONSE
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
t , Rectangular Pulse Duration (sec)
1
J DM thJC C
DM
t
1
1 2
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF2805S/IRF2805L
15V
DRIVER
+
-
V
DD
R
V
20V
V
DS
G
GS
L
D.U.T
I
AS
0.01
t
p
Ω
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
800
TOP
600
400
200
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature ( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4.0
I
D
42.5A
73.5A
104A
°
V
G
3.0
ID = 250µA
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
I
G
Current Sampling Resistors
+
V
DS
-
D
Fig 13b. Gate Charge Test Circuit
2.0
Gate threshold Voltage (V)
GS(th)
-V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
IRF2805S/IRF2805L
10000
Duty Cycle = Single Pulse
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
100
0.01
0.05
10
0.10
Avalanche Current (A)
1
0.1
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
assuming ∆Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
400
300
200
, Avalanche Energy (mJ)
100
AR
E
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 104A
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
every part type.
2. Safe operation in Avalanche is allowed as long asT
not exceeded.
. This is validated for
jmax
jmax
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t
Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
P
= 1/2 ( 1.3·BV·Iav) =
D (ave)
∆∆
I
2
∆T/ [1.3·BV·Z th]
∆∆
av =
E
AS (AR)
= P
·f
av
D (ave)·tav
∆∆
∆T/ Z
∆∆
thJC
www.irf.com 7
is
Page 8
IRF2805S/IRF2805L
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
S
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
+
R
-
T
-
+
Q
R
G
V
GS
• dv/dt controlled by R
• I SD controlled by Duty Factor "D"
G
• D.U.T. - Device Under Test
V
DD
* Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D =
P.W.
Period
VGS=10V
[ ] ***
D.U.T. ISDWaveform
Reverse
Recovery
Current
Re-Applied
Voltage
D.U.T. VDSWaveform
Inductor Curent
*** V
= 5.0V for Logic Level and 3V Drive Devices
GS
Fig 17. For N-channel HEXFET
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple ≤ 5%
®
power MOSFETs
V
DD
[ ]
I
[ ]
SD
8 www.irf.com
Page 9
D2Pak Package Outline
F530S
THIS IS AN IRF 530S WITH
LOT CODE 8024
ASSEMBLE D ON WW 02, 2 000
IN THE ASSEMBLY LI NE "L"
ASSEMBLY
LOT CODE
INTERNATIONAL
RE CTIFIER
LOGO
PART NUMBER
DA TE CODE
YEAR 0 = 2000
WEEK 0 2
LINE L
IRF2805S/IRF2805L
2
D
Pak Part Marking Information
www.irf.com 9
Page 10
IRF2805S/IRF2805L
TO-262 Package Outline
TO-262 Part Marking Information
EXAMPLE:
10 www.irf.com
THIS IS AN IRL3103L
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
AS S EMB L Y
LOT CODE
PART NUMBE
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
Page 11
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
IRF2805S/IRF2805L
1.60 (.063)
1.50 (.059)
0.368 (.0145)
0.342 (.0135)
FEED DIRECTION
1.85 (.073 )
1.65 (.065 )
TRL
10.90 (.429)
10.70 (.421)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
330.00
(14.173)
M A X.
NOTES :
1. COMFORMS TO EIA-418.
2. C ONTROLLING DIMEN SION: MILLIMETE R.
3. DIMENSION M EASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
11.60 (.457)
11.40 (.449)
1.75 (.069)
1.25 (.049)
16.10 (.634)
15.90 (.626)
15.42 (.609)
15.22 (.601)
27.40 (1.079)
23.90 (.941)
4
26.40 (1.039)
24.40 (.961)
3
24.30 (.957)
23.90 (.941)
4.72 (.136)
4.52 (.178)
60.00 (2.36 2)
MIN.
30.40 (1.197)
M AX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/02
www.irf.com 11