Datasheet IRF2805PbF Datasheet (International Rrectifier)

Page 1
S
D
G
查询IRF2805PBF供应商
PD - 95493
AUTOMOTIVE MOSFET
Typical Applications
l Climate Control, ABS, Electronic Braking,
Windshield Wipers
l Lead-Free
Features
l Advanced Process Technology l Ultra Low On-Resistance l 175°C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax
IRF2805PbF
HEXFET® Power MOSFET
V
= 55V
DSS
R
DS(on)
I
D
= 4.7m
= 75A
Description
Specifically designed for Automotive applications, this HEXFET MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and im­proved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
®
Power
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon limited) 175 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig.9) 120 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) 75 I
DM
PD @TC = 25°C Power Dissipation 330 W
V
GS
E
AS
E
(6 sigma) Single Pulse Avalanche Energy Tested Value 1220
AS
I
AR
E
AR
T
J
T
STG
Pulsed Drain Current 700
Linear Derating Factor 2.2 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 450 mJ
Avalanche Current See Fig.12a, 12b, 15, 16 A Repetitive Avalanche Energy mJ Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N•m (lbf•in)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
R
θJA
Junction-to-Case ––– 0.45 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com 1
07/01/04
Page 2
IRF2805PbF
S
D
S
D
G
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 1600 ––– VGS = 0V, VDS = 0V to 44V
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
 Starting T
RG = 25, I
I
SD
TJ ≤ 175°C
Pulse width ≤ 400µs; duty cycle 2%.
Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.06 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 3.9 4.7 m VGS = 10V, ID = 104A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA Forward Transconductance 91 ––– ––– S VDS = 25V, ID = 104A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 55V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 55V, VGS = 0V
µA
nA
VGS = -20V Total Gate Charge –– – 150 230 ID = 104A Gate-to-Source Charge ––– 38 57 nC VDS = 44V Gate-to-Drain ("Miller") Charge ––– 52 78 VGS = 10V Turn-On Delay Time ––– 14 ––– VDD = 28V Rise Time ––– 120 ––– ID = 104A Turn-Off Delay Time ––– 68 ––– RG = 2.5
ns
Fall Time ––– 110 ––– VGS = 10V
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 5110 ––– VGS = 0V Output Capacitance ––– 1190 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 210 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 6470 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 860 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
175
700
showing the
A
p-n junction diode. Diode Forward Voltage –– – ––– 1.3 V TJ = 25°C, IS = 104A, VGS = 0V Reverse Recovery Time ––– 80 120 ns TJ = 25°C, IF = 104A Reverse Recovery Charge ––– 290 430 nC di/dt = 100A/µs Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
C
eff. is a fixed capacitance that gives the same charging time
oss
= 25°C, L = 0.08mH
J
= 104A. (See Figure 12).
AS
104A, di/dt 240A/µs, V
DD
V
(BR)DSS
as C Limited by T avalanche performance. This value determined from sample failure population. 100%
,
tested to this value in production.
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
G
.
2 www.irf.com
Page 3
IRF2805PbF
0
1000
) A
(
t
n
e
r
r
100
u C e
c
r
u
o S
-
o
t
-
10
n
i
a
r D
,
D
I
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
1
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Source Voltage (V )
1000
TJ = 25°C
) A
(
t
n
e
r
r
u C e
c
r
100
u
o S
-
o
t
-
n
i
a
r D
,
D
I
10
4.0 5.0 6.0 7.0 8.0 9.0 10. 0
V
= 25V
DS
20µs PULSE WIDTH
VGS, Gat e-to-Source Voltage (V)
TJ = 175°C
) A
(
t
n
e
r
r
u C e
c
r
u
o S
-
o
t
-
n
i
a
r D
, I
1000
100
D
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
10
0.1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V )
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
) S
(
160
e
c
n
a
t
c
u
d
120
n
o
c
s
n
a
r T
80
d
r
a w
r
o F
40
,
s
f G
TJ = 175°C
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
0
0 40 80 120 160 20
ID, Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
Page 4
IRF2805PbF
) F
p
( e
c
n
a
t
i
c
a
p
a C
, C
10000
8000
6000
4000
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
SHORTED C
= C
rss
C
= C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
(
t
100.0
n
e
r
r
u C n
i
a
r
10.0
D e
s
r
e
v
e R
,
1.0
D S
I
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1. 8
TJ = 175°C
TJ = 25°C
VSD, Source-toDrain Vol tage (V)
gd
ds
+ Cgd, C
gs
+ C
gd
Ciss
Coss Crss
20
ds
ID= 104A
) V
(
16
e
g
a
t
l
o V
12
e
c
r
u
o S
-
o
8
t
-
e
t
a G
,
S
4
G
V
VDS= 44V VDS= 28V
0
0 40 80 120 160 200 240
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
) A
(
t
1000
n
e
r
r
u C e
c
r
100
u
o S
-
o
t
-
n
i
a
r
10
D ,
D
I
V
= 0V
GS
Tc = 25°C Tj = 175°C Single Puls e
1
1 10 100 1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
V
, Drain-toSource Vol tage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF2805PbF
180
LIMITED BY PACKAGE
150
120
90
60
D
I , Drain Cur rent (A)
30
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
3.0
175A
I =
D
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 10. Normalized On-Resistance
Vs. Temperature
V =
GS
°
10V
D = 0.50
thJC
0.20
0.1
0.10
0.05
0.02
0.01
0.01
Thermal Response (Z )
0.001
0.00001 0.0001 0.001 0.01 0.1
SINGLE PULSE
(THERMAL RESPONSE)
t , Rectangular Pulse Duration (sec)
1
P
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
J DM thJC C
t
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF2805PbF
V
S
Current Regulator
I
A
15V
DRIVER
+
V
DD
-
R
20V
V
V
DS
G
GS
L
D.U.T
I
AS
0.01
t
p
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
1000
TOP
800
600
400
200
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting Tj, Junction Temperature ( C)
BOTTOM
°
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4.0
I
D 43A 87A
104A
) V
(
G
Charge
Fig 13a. Basic Gate Charge Waveform
Same Type as D.U.T.
50K
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
Current Sampling Resistors
I
G
+
V
D
-
D
Fig 13b. Gate Charge Test Circuit
e
g
a
t
l
o
3.0
V d
l
o
h
s
e
r
h
t e
t
a
2.0
G
)
h
t
( S G
V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175
ID = 250µA
TJ , Temperat ure ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
IRF2805PbF
10000
Duty Cycle = Single Pulse
1000
) A
(
t
n
e
r
r
u C
100
e
h
c
n
a
l
a
v A
10
1
1.0E-07 1.0E-06 1.0E-05 1. 0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to aval anche losses. Note: In no case should Tj be allowed to exceed Tjmax
500
TOP Single Pulse BOTTOM 10% Duty Cycle
)
400
J m
( y
g
r
e
n
300
E e
h
c
n
a
l
200
a
v A
,
R A
100
E
ID = 104A
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
2. Safe operation in Avalanche is allowed as long asT not exceeded.
. This is validated for
jmax
jmax
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
·f
av
D (ave)·tav
thJC
www.irf.com 7
is
Page 8
IRF2805PbF
R V
+
-
V 9
1 V
+
-
Reverse Recovery Current
Driver Gate Drive
P.W.
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
e-Applied
oltage
Period
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P.W.
Period
VGS=10V
V
DD
I
SD
*
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
R
D.U.T.
D
V
DD
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
DS
0%
0%
GS
t
d(on)tr
t
d(off)tf
Fig 18b. Switching Time Waveforms
8 www.irf.com
Page 9
K
TO-220AB Package Outline
R
Dimensions are shown in millimeters (inches)
IRF2805PbF
10.54 (.415)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
1.40 (.055)
3X
1.15 (.045)
2.54 (.100)
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DI M E NSION : INCH 4 HEATSINK & LEAD MEAS UREMENTS DO NOT INCLUDE BURRS.
10.29 (.405)
4
1 2 3
2X
3.78 (.149)
3.54 (.139)
- A -
6.47 (.255)
6.10 (.240)
1.15 (.045) MIN
4.06 (.160)
3.55 (.140)
0.93 (.037)
3X
0.69 (.027)
0.36 (.014) M B A M
4.69 (.185)
4.20 (.165)
- B -
1.32 (.052)
1.22 (.048)
2.92 (.115)
2.64 (.104)
HEXFET 1- GATE
2- DRAIN 3- SOURCE 4- DRAIN
3X
LEAD ASSIGNMENTS
LEAD ASSIGNM ENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
0.55 (.022)
0.46 (.018)
TO-220AB Part Marking Information
EXAMPLE:
THIS IS AN IRF1010 LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN TH E ASSEMBLY LINE "C"
Note: "P" in assembly line position indicates "Lead-Free"
INTERNATIONAL
RE CTIFIER
LOGO
AS S EMBLY LOT CODE
IGBTs, CoPAC 1- GATE
2- COLLECTOR 3- EMITT E R 4- COLLECTOR
PART NUMBE
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/04
www.irf.com 9
Loading...