Datasheet IRF1607 Datasheet (International Rectifier)

Page 1
PD -94158
AUTOMOTIVE MOSFET
Typical Applications
42 Volts Automotive Electrical Systems
Electrical Power Steering (EPS)
Integrated Starter Alternator
HEXFET® Power MOSFET
D
IRF1607
V
= 75V
DSS
Benefits
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Automotive [Q101] Qualified
G
S
R
DS(on)
ID = 142A
= 0.0075
Description
Specifically designed for Automotive applications, this Stripe Planar design of HEXFET utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
®
Power MOSFETs
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 142 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 100 A I
DM
PD @TC = 25°C Power Dissipation 380 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 5.2 V/ns T
J
T
STG
Pulsed Drain Current 570
Linear Derating Factor 2.5 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 1250 mJ Avalanche Current See Fig.12a, 12b, 15, 16 A Repetitive Avalanche Energy mJ
Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.40 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
www.irf.com 1
9/4/01
Page 2
IRF1607
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 1420 ––– VGS = 0V, VDS = 0V to 60V
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting T
RG = 25, I
I
SD
TJ ≤ 175°C
Pulse width 400µs; duty cycle 2%.
2 www.irf.com
Drain-to-Source Breakdown Voltage 75 –– – –– – V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.086 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 0.00580.0075 VGS = 10V, ID = 85A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA Forward Transconductance 79 ––– ––– S VDS = 25V, ID = 85A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 60V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 75V, VGS = 0V
µA
nA
VGS = -20V Total Gate Charge –– – 210 3 2 0 ID = 85A Gate-to-Source Charge ––– 45 68 nC VDS = 60V Gate-to-Drain ("Miller") Charge ––– 73 110 VGS = 10V Turn-On Delay Time ––– 22 ––– VDD = 38V Rise Time ––– 130 ––– ID = 85A Turn-Off Delay Time ––– 84 ––– RG = 1.8
ns
Fall Time ––– 86 ––– VGS = 10V
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 7750 ––– VGS = 0V Output Capacitance ––– 1230 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 310 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 5770 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 790 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
142
570
showing the
A
p-n junction diode. Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 85A, VGS = 0V Reverse Recovery Time ––– 130 200 ns TJ = 25°C, IF = 85A Reverse RecoveryCharge ––– 690 1040 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
C
eff. is a fixed capacitance that gives the same charging time
oss
= 25°C, L = 0.21mH
J
= 85A, VGS=10V (See Figure 12).
AS
85A, di/dt 310A/µs, V
DD
V
(BR)DSS
as C Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
,
Limited by T
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
avalanche performance.
G
G
.
D
S
D
S
Page 3
IRF1607
1000
100
10
, Drain-to-Source Current (A)
D
I
1
0.1 1 10 100
1000
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
4.5V
20µs PULSE WIDTH Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH T = 175 C
V , Drain-to-Source Voltage (V)
DS
°
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
142A
I =
D
2.5
°
T = 175 C
J
100
°
T = 25 C
10
D
I , Drain-to-Source Current (A)
1
4.0 5.0 6.0 7.0 8.0 9.0 10.0
J
V = 25V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
Vs. Temperature
www.irf.com 3
Page 4
IRF1607
12000
10000
Ciss
8000
6000
4000
C, Capacitance(pF)
2000
Coss
Crss
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
gd
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
°
T = 175 C
J
100
SHORTED
ds
20
I =
85A
D
V = 60V
DS
V = 37V
G
DS
V = 15V
DS
FOR TEST CIRCUIT
SEE FIGURE
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
0
0 100 200 300 400
Q , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
13
10
°
T = 25 C
1
SD
I , Reverse Drain Current (A)
0.1
0.2 0.6 1.0 1.4 1.8 2.2
V ,Source-to-Drain Voltage (V)
SD
J
V = 0 V
GS
Fig 7. Typical Source-Drain Diode
100
10
, Drain-to-Source Current (A)
D
Tc = 25°C
I
Tj = 175°C Single Pulse
1
1 10 100 1000
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF1607
160
LIMITED BY PACKAGE
120
80
D
I , Drain Current (A)
40
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
R
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
D
D.U.T.
Fig 10a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 10b. Switching Time Waveforms
+
V
DD
-
D = 0.50
thJC
0.1
0.20
0.10
0.05
0.01
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
Thermal Response (Z )
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
0.001
0.00001 0.0001 0.001 0.01 0.1 1
t , Rectangular Pulse Duration (sec)
1
J DM thJC C
P
DM
t
1 2
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1607
A
15V
DRIVER
+
-
V
DD
R
V
20V
V
DS
G
GS
L
D.U.T
I
AS
0.01
t
p
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
3000
TOP
2500
2000
1500
1000
500
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature ( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
5.0
I
°
D 35A 60A 85A
V
G
4.0
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
3.0
ID = 250µA
Gate threshold Voltage (V)
50K
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
-
I
D
Fig 13b. Gate Charge Test Circuit
DS
2.0
GS(th)
V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
1000
IRF1607
Duty Cycle = Single Pulse
Allowed avalanche Current vs
100
0.01
avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses
0.05
10
0.10
Avalanche Current (A)
1
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
1400
1200
1000
800
600
, Avalanche Energy (mJ)
400
AR
E
200
0
25 50 75 100 125 150 175
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 85A
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
. This is validated for
jmax
2. Safe operation in Avalanche is allowed as long asT not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
av
·f
jmax
is
D (ave)·tav
∆∆
T/ Z
∆∆
thJC
Fig 16. Maximum Avalanche Energy
Vs. Temperature
P
= 1/2 ( 1.3·BV·Iav) =
D (ave)
I
av =
E
AS (AR)
∆∆
2
T/ [1.3·BV·Zth]
∆∆
= P
www.irf.com 7
Page 8
IRF1607
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance Current Transformer
-
+
-
-
+
R
G
V
GS
dv/dt controlled by R
ISD controlled by Duty Factor "D"
G
D.U.T. - Device Under Test
+
V
DD
-
* Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D =
P.W.
Period
VGS=10V
[ ] ***
D.U.T. ISDWaveform
Reverse Recovery Current
Re-Applied Voltage
D.U.T. VDSWaveform
Inductor Curent
*** V
= 5.0V for Logic Level and 3V Drive Devices
GS
Fig 17. For N-channel HEXFET
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
®
power MOSFETs
V
DD
[ ]
I
[ ]
SD
8 www.irf.com
Page 9
Package Outline
A
TO-220AB
Dimensions are shown in millimeters (inches)
10.54 (.415)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
10.29 (.405)
1 2 3
6.47 (.255)
6.10 (.240)
4
1.15 (.045) M IN
4.06 (.160)
3.55 (.140)
3.78 (.149)
3.54 (.139)
- A -
4.69 (.185)
4.20 (.165)
- B -
1.32 (.052)
1.22 (.048)
IRF1607
LEAD ASSIGNMENTS 1 - GAT E 2 - DRA IN 3 - SOU RC E 4 - DRA IN
1.40 (.055)
3X
1.15 (.045)
2.54 (.100)
NOTES: 1 DIM E N S IO N IN G & T O L E R A N C I N G P E R A N S I Y 1 4 . 5 M , 1 9 8 2 . 3 OU T L IN E C O N F O R M S T O JE D E C OU T L IN E T O - 2 2 0 A B . 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
2X
Part Marking Information
TO-220AB
EXAMPLE : THIS IS AN IRF1010 W IT H A SSEMB L Y LOT CO D E 9 B1M
This product has been designed and qualified for the Automotive [Q101] market.
0.93 (.037)
3X
0.69 (.027)
0.36 (.01 4) M B A M
INTERN A TION A L RE CTIFIER L OGO
ASSEMBLY LOT COD E
Data and specifications subject to change without notice.
0.55 (.022)
3X
0.46 (.018)
2.92 (.115)
2.64 (.104)
PART NUMB ER
I RF1010
9246
9B 1 M
DATE CODE (YYWW) YY = YEAR WW = WEEK
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 9/01
www.irf.com 9
Loading...