Datasheet IRF1503 Datasheet (International Rrectifier)

Page 1
查询IRF1503供应商
PD-94526A
AUTOMOTIVE MOSFET
Typical Applications
14V Automotive Electrical Systems
14V Electronic Power Steering
HEXFET® Power MOSFET
D
IRF1503
V
= 30V
DSS
Features
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
G
S
R
DS(on)
= 3.3m
ID = 75A
Description
Specifically designed for Automotive applications, this design of HEXFET processing techniques to achieve extremely low on­resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
®
Power MOSFETs utilizes the lastest
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon limited) 240 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig.9) 170 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) 75 I
DM
PD @TC = 25°C Power Dissipation 330 W
V
GS
E
AS
E
(tested) Single Pulse Avalanche Energy Tested Value 980
AS
I
AR
E
AR
T
J
T
STG
Pulsed Drain Current 960
Linear Derating Factor 2.2 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 510 mJ
Avalanche Current See Fig.12a, 12b, 15, 16 A Repetitive Avalanche Energy mJ Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.45 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
www.irf.com 1
12/11/02
Page 2
IRF1503
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 3420 ––– VGS = 0V, VDS = 0V to 24V
oss
Drain-to-Source Breakdown Voltage 30 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient ––– 0.028 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 2.6 3.3 m VGS = 10V, ID = 140A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA Forward Transconductance 75 ––– ––– S VDS = 25V, ID = 140A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 30V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 200 V Gate-to-Source Reverse Leakage ––– ––– -200
µA
nA
V
= 30V, VGS = 0V
DS
= 20V
GS
VGS = -20V Total Gate Charge ––– 130 200 ID = 140A Gate-to-Source Charge ––– 36 54 nC VDS = 24V Gate-to-Drain ("Miller") Charge ––– 41 62 VGS = 10V Turn-On Delay Time ––– 17 ––– VDD = 15V Rise Time ––– 130 ––– ID = 140A Turn-Off Delay Time ––– 59 ––– RG = 2.5
ns
Fall Time ––– 48 ––– VGS = 10V
5.0
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
13
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 5730 ––– VGS = 0V Output Capacitance ––– 2250 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 290 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 7580 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 2290 ––– VGS = 0V, VDS = 24V, ƒ = 1.0MHz
D
G
S
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
240
960
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 140A, VGS = 0V Reverse Recovery Time ––– 71 110 ns TJ = 25°C, IF = 140A, VDD = 15V Reverse RecoveryCharge ––– 110 170 nC di/dt = 100A/µs  Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
 Starting T
RG = 25, I
= 25°C, L = 0.049mH
J
= 140A. (See Figure 12).
AS
Pulse width 400µs; duty cycle 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C Limited by T
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
.
avalanche performance. This value determined from sample failure population. 100% tested to this value in production.
2 www.irf.com
D
S
Page 3
IRF1503
1000
) A
( t n e
r
r
100
u C e
c
r
u o
S
­o
t
-
10
n
i a
r D
,
D
I
VGS TOP 15 V 10 V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
4.5V
20µs PULSE WIDTH Tj = 25° C
1
0. 1 1 10 100
VDS, Drain-to-Source Vol tage (V)
1000
TJ = 25°C
)
Α
(
t n e
r
r u
C e
c
r
100
u o S
­o
t
­n
i a
r D
,
D
I
10
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V
= 25V
DS
20µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
TJ = 175°C
1000
) A
( t n e
r
r u
C e
c
r
100
u o
S
­o
t
­n
i a
r D
,
D
I
VGS TOP 15 V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
10
0. 1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
) S
(
160
e c n a
t c u d
120
n o c s n a
r T
80
d
r a
w
r o F
40
, s
f G
0
TJ = 175°C
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
0 40 80 120 160 200
ID, Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
Page 4
IRF1503
) F
p
( e
c n a
t
i c a p a
C ,
C
10000
8000
6000
4000
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
is s
SHORTED
C
= C
rss
C
= C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
( t
100.0
n e
r
r u
C n
i a
r
10.0
D e
s
r e v e
R ,
D S
I
TJ = 175°C
1.0
TJ = 25°C
0.1
0.0 0.4 0.8 1.2 1.6 2.0
VSD, Source-toDrain Voltage (V)
gd
ds
Cis s
Coss
Crss
+ Cgd, C
gs
+ C
gd
V
GS
ds
= 0V
20
ID= 140A
) V
(
16
e g a
t
l o V
12
e c
r u o S
­o
8
t
­e
t a
G ,
S
4
G
V
0
0 40 80 120 160 200
Q
VDS= 24V
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
) A
( t n e
r
r u
C e
c r
u
o S
­o
t
­n
i a
r D ,
D
I
1000
100
10
Tc = 25°C Tj = 175°C Single Pulse
1
1 10 100
OPERATION IN THIS A REA LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF1503
240
LIMITED BY PACKAGE
200
160
120
80
D
I , Drain Current (A)
40
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
2.0
240A
I =
D
1.5
1.0
(Normalized)
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 10. Normalized On-Resistance
Vs. Temperature
V =
GS
°
10V
D = 0.50
thJC
0.20
0.1
0.10
0.05
0.02
0.01
0.01
Thermal Response (Z )
0.001
0.00001 0.0001 0.001 0.01 0.1
SINGLE PULSE
(THERMAL RESPONSE)
t , Rectangular Pulse Duration (sec)
1
P
DM
Not es:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
J DM thJC C
t
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1503
A
15V
DRIVER
+
-
V
DD
R
20V
V
V
DS
G
GS
L
D.U.T
I
AS
0.01
t
p
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
1000
TOP
800
600
400
200
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature ( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4. 0
I
°
D
59A 100A 140A
)
V
G
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50K
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
DS
-
I
D
Fig 13b. Gate Charge Test Circuit
V
( e
g a
t
l o
3. 0
V d
l o h s e
r h
t e
t a
2. 0
G
) h
t
( S G
V
1. 0
-75 -50 -25 0 25 50 75 100 125 150 175 200
ID = 250µA
TJ , Temperature ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
IRF1503
10000
Duty Cycle = Single Pulse
1000
) A
( t n e
r
r u
C
100
e h c n a
l a v A
10
1
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
600
TOP Single Pulse
500
) J
m
( y
g
400
r e n E
e
300
h c n a
l a v
200
A ,
R A
E
100
BOTTOM 50% Duty Cycle ID = 140A
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
2. Safe operation in Avalanche is allowed as long asT not exceeded.
. This is validated for
jmax
jmax
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
·f
av
D (ave)·tav
thJC
www.irf.com 7
is
Page 8
IRF1503
+
-
+
-
Reverse Recovery Current
Driver Gate Drive
P.W.
D.U.T. ISDWaveform
D.U.T. VDSWaveform
D.U.T
+
-
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
+
V
DD
R
G
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
Re-Applied Voltage
Inductor Curent
* V
GS
Period
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
R
D.U.T.
D
V
DD
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 18b. Switching Time Waveforms
8 www.irf.com
Page 9
Package Outline
A
TO-220AB
Dimensions are shown in millimeters (inches)
10.54 (.415)
2.87 (. 113)
2.62 (. 103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
10.29 (.405)
1 2 3
6.47 (. 255)
6.10 (. 240)
4
1.15 (. 045) MIN
4.06 (. 160)
3.55 (. 140)
3.78 (.149)
3.54 (.139)
- A -
4.69 (.1 85)
4.20 (.1 65)
- B -
1.32 (. 052)
1.22 (. 048)
IRF1503
LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
0.93 (. 037)
3X
1.40 (.055)
3X
1.15 (.045)
2.54 (.1 00)
NOTES:
1 DIMENSION ING & TO LERAN CING PER AN SI Y14.5M, 19 82. 3 OUTLINE C ONFOR MS TO JEDEC OUTLIN E TO-220A B. 2 C ONTRO LLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
2X
0.69 (. 027)
0.36 (.014) M B A M
2.92 ( .115)
2.64 ( .104)
Part Marking Information
TO-220AB
EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M
TO-220AB package is not recommended for Surface Mount Application.
This product has been designed and qualified for Automotive [Q101] market.
INTERNATIONAL RECTIFIER LOGO
IRF1010
9246
9B 1M
ASSEMBLY LOT CODE
Data and specifications subject to change without notice.
Qualification Standards can be found on IR’s Web site.
3X
0.55 (. 022)
0.46 (. 018)
PART NUMBER
DATE CODE (YYWW) YY = YEAR WW = WEEK
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/02
www.irf.com 9
Loading...