Datasheet IRF140, IRF143, IRF142 Datasheet (Intersil)

Page 1
IRF140
Data Sheet March 1999
28A, 100V, 0.077 Ohm, N-Channel Power MOSFET
This N-Channel enhancementmode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdownavalanchemodeof operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17421.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF140 TO-204AE IRF140
NOTE: When ordering, use the entire part number .
File Number
Features
• 28A, 100V
DS(ON)
= 0.077
•r
• Single Pulse Avalanche Energy Rated
• SOA is Power-Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Majority Carrier Device
Symbol
D
G
S
2306.3
Packaging
DRAIN (FLANGE)
GATE (PIN 1)
JEDEC TO-204AE
SOURCE (PIN 2)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
IRF140
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF140 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate To Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DS
D D
DM
GS
D
100 V 100 V
28
20 110 A ±20 V 150 W
A A
Linear Derating Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
100 mJ
-55 to 175
300 260
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V
GS(TH)VDS
Zero Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)VDS
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Forward Transconductance (Note 2) g Turn-On Delay Time t
D(ON)VDD
Rise Time t Turn-Off Delay Time t
D(OFF)
Fall Time t Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance, Junction to Case R Thermal Resistance, Junction to Ambient R
DSSID
DSS
GSS
fs
r
f
gs gd
ISS OSS RSS
D
S
θJC
θJA
= 250µA, VGS = 0V (Figure 10) 100 - - V
= VGS, ID = 250µA 2.0 - 4.0 V VDS = Rated BV VDS = 0.8 x Rated BV
> I
D(ON)
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ = 150oC - - 250 µA
DSS
x r
DS(ON)MAX
, VGS = 10V 28 - - A
VGS = ±20V - - ±100 nA
= 17A, VGS = 10V (Figures 8, 9) - 0.07 0.077
VDS > I
= 50V, I (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
D(ON)
x r
DS(ON)MAX
28A, R
D
, ID = 17A (Figure 12) 8.7 13 - S
= 9.1, RL = 1.7
G
-1623ns
- 27 110 ns
-3860ns
-1475ns
= 10V, ID = 28A, VDS = 0.8 x Rated BV I
= 1.5mA (Figures 14, 19, 20) Gate Charge is
g(REF)
DSS
Essentially Independent of Operating Temperature
-3859nC
-9-nC
-21-nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 1275 - pF
- 550 - pF
- 160 - pF
Measured between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die
Measured from the Source Lead, 6mm (0.25in) from the Flange and the Source Bonding Pad
Modified MOSFET Symbol Showing the Internal Device Inductances
D
L
D
G
L
S
S
- 5.0 - nH
- 12.5 - nH
- - 1.0oC/W
Free Air Operation - - 30
o
C/W
2
Page 3
IRF140
SourceTo Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current
I
SDM
(Note 3)
Drain to Source Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovery Charge Q
NOTES:
2. Pulse Test: Pulse Width 300µs, Duty Cycle 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3).
4. VDD = 25V, starting TJ = 25oC, L = 190µH, RG = 25Ω, peak IAS= 28A (Figures 15, 16).
Modified MOSFET
SD
Symbol Showing the Integral Reverse P-N
D
- - 28 A
- - 110 A
Junction Rectifier
G
S
TJ = 25oC, ISD = 28A, VGS = 0V (Figure 13) - - 2.5 V
SD
TJ = 25oC, ISD = 28A, dISD/dt = 100A/µs 70 150 300 ns
rr
TJ = 25oC, ISD = 28A, dISD/dt = 100A/µs 0.44 0.9 1.9 µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
25 50 75 100
0
0
T
C
, CASE TEMPERATURE (oC)
125
150
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
2 1
0.5
0.2
C/W)
o
, TRANSIENT THERMAL
IMPEDANCE (
θJC
Z
0.1
0.1
0.05
0.02
0.01
-2
10
10
-3
-5
10
SINGLE PULSE
-4
10
-3
10
, RECTANGULAR PULSE DURATION (S)
t
1
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
175
30
24
18
12
, DRAIN CURRENT (A)
D
I
6
0
25 50 75 100 125 150 175
, CASE TEMPERATURE (oC)
T
C
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
t
2
NOTES: DUTY FACTOR: D = t1/t PEAK TJ = PDM x Z
-2
10
0.1 1 10
θJC
2
+ T
C
3
Page 4
IRF140
Typical Performance Curves
1000
OPERATION IN THIS AREA LIMITED
BY r
DS(ON)
100
10
, DRAIN CURRENT (A)
D
I
TC = 25oC T
= MAX RATED
J
SINGLE PULSE
1
110
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
(Continued)
10µs 100µs
1ms
10ms
DC
100 1000
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
V
DS
VGS = 8V VGS = 10V
, DRAIN TO SOURCE VOLTAGE (V)
80µs PULSE TEST
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
2
50
PULSE DURATION = 80µs
40
30
VGS = 8V
VGS = 10V
VGS = 7V
VGS = 6V
10
50V
V
DS
80µs PULSE TEST
10
VGS = 7V
VGS = 6V
VGS = 5V
VGS = 4V
50403020100
20
, DRAIN CURRENT (A)
D
I
10
0
V
DS
VGS = 5V
VGS = 4V
5.04.03.02.01.00
, DRAIN TO SOURCE VOLTAGE (V)
1
TJ = 175oC
, SOURCE TO DRAIN CURRENT (A)
SD
I
0.1 0246810
V
GS
TJ = 25oC
, GATE TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
1.0
80µs PULSE TEST
0.8
0.6 VGS = 10V
0.4
, DRAIN TO SOURCE
ON RESISTANCE
DS(ON)
0.2
r
0
0 25 50 75 100 125
, DRAIN CURRENT (A)
I
D
VGS = 20V
3.0
2.4
1.8
1.2
ON RESISTANCE
0.6
NORMALIZED DRAIN TO SOURCE
0
ID = 17A
= 10V
V
GS
0 40 80 120 160-40
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 8. DRAIN TOSOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
Page 5
IRF140
Typical Performance Curves
1.25 ID = 250µA
1.15
1.05
0.95
BREAKDOWN VOLTAGE
0.85
NORMALIZED DRAIN TO SOURCE
0.75
0 40 80 120 160-40
, JUNCTION TEMPERATURE (oC)
T
J
(Continued)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
20
VDS≥ 50V 80µs PULSE TEST
16
12
8
, TRANSCONDUCTANCE (S)
4
fs
g
0
01020304050
I
, DRAIN CURRENT (A)
D
TJ = 175oC
TJ = 25oC
3000
2400
1800
1200
C, CAPACITANCE (pF)
600
0
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
10
C
ISS
C
OSS
C
RSS
VGS = 0V, f = 1MHz C
= CGS + C
C C
ISS RSS
OSS
= C
CDS + C
GD
GD
GD
10
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
3
10
2
10
TJ = 175oC
10
TJ = 25oC
, SOURCE TO DRAIN CURRENT (A)
SD
I
1
0 0.6 1.2 1.8 2.4 3.0
V
, SOURCE TO DRAIN VOLTAGE (V)
SD
2
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
ID = 28A
16
12
8
4
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 1224364860
Q
, TOTAL GATE CHARGE (nC)
g(TOT)
VDS = 80V V
= 50V
DS
V
= 20V
DS
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
Page 6
IRF140
Test Circuits and Waveforms
V
DS
t
I
AS
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
L
R
G
+
V
DD
-
DUT
0V
P
I
AS
0
t
0.01
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
BV
DSS
P
t
AV
V
DS
V
DD
R
G
V
GS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
CURRENT
REGULATOR
12V
BATTERY
0.2µF
50k
0.3µF
t
ON
t
d(ON)
t
V
R
L
+
V
DD
-
DUT
DS
0
V
GS
0
90%
10%
r
10%
50%
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DS
(ISOLATED SUPPLY)
SAME TYPE AS DUT
V
DD
Q
g(TOT)
Q
gd
Q
gs
V
GS
G
I
0
g(REF)
IG CURRENT
SAMPLING
RESISTOR RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
6
D
DUT
S
CURRENT
I
D
SAMPLING
V
DS
0
I
V
DS
g(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
Page 7
IRF140
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
7
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...