Page 1
AUTOMOTIVE MOSFET
PD - 94969A
Typical Applications
l Electric Power Steering (EPS)
l Anti-lock Braking System (ABS)
l Wiper Control
l Climate Control
l Power Door
Benefits
l Advanced Process Technology
l Ultra Low On-Resistance
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax
l Lead-Free
G
IRF1405PbF
HEXFET® Power MOSFET
D
V
= 55V
DSS
R
S
D
= 5.3mΩ
DS(on)
ID = 169A
Description
Specifically designed for Automotive applications, this Stripe
Planar design of HEXFET® Power MOSFETs utilizes the latest
processing techniques to achieve extremely low on-resistance
per silicon area. Additional features of this HEXFET power
MOSFET are a 175°C junction operating temperature, fast
switching speed and improved repetitive avalanche rating.
These benefits combine to make this design an extremely
efficient and reliable device for use in Automotive applications
and a wide variety of other applications.
TO-220AB
S
D
G
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
@ TC = 100°C Continuous Drain Current, VGS @ 10V
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode recovery dv/dt
T
J
T
STG
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
d
c
i
e
See Fig.12a, 12b, 15, 16
300 (1.6mm from case )
Max.
169
118
680
330
2.2
± 20
560
5.0
-55 to + 175
y
in (1.1Ny m)
10 lbf
h
h
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter T
R
θ JC
R
θ CS
R
θ JA
Junct ion-to-Case ––– 0.45
Case-to-Sink, Flat, Greased Surface 0.50 –––
Junct ion-to-Ambient ––– 62
. Max.
Units
°C/W
www.irf.com 1
11/12/08
Page 2
IRF1405PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
∆ V
R
DS(on)
V
GS(th)
Drain-to-Source Breakdown Voltage 55 ––– ––– V
/∆ T
Breakdown Voltage Temp. Coefficient ––– 0.057 ––– V/°C
DSS
J
Static Drain-to-Source On-Resistance ––– 4.6 5.3
Gate Threshold Voltage 2.0 ––– 4.0 V
gfs Forward Transconductance 69 ––– ––– S
I
DSS
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Q
Q
Q
t
t
t
t
L
L
C
C
C
C
C
C
g
gs
gd
d(on)
r
d(off)
f
D
S
iss
oss
rss
oss
oss
oss
eff.
Total Gate Charge ––– 170 260
Gate-to-Source Charge ––– 44 66 nC
Gate-to-Drain ("Miller") Charge ––– 62 93
Turn-On Delay Time ––– 13 –––
Rise Time ––– 190 –––
Turn-Off Delay Time ––– 130 ––– ns
Fall Time ––– 110 –––
Internal Drain Inductance Between lead,
Internal Source Inductance from package
–––
4.5 –––
–––
––– 7.5
Input Capacitance ––– 5480 –––
Output Capacitance ––– 1210 –––
Reverse Transfer Capacitance ––– 280 ––– pF
Output Capacitance ––– 5210 –––
Output Capacitance ––– 900 –––
Effective Output Capacitance
g
– – –1 5 0 0– – –
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode) A
Pulsed Source Current
(Body Diode)
c
––– ––– 169
––– ––– 680
h
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 88 130 ns
Reverse Recovery Charge ––– 250 380 nC
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 0V, ID = 250µA
Reference to 25°C, I
V
mΩ
VDS = VGS, ID = 250µA
V
V
V
V
V
I
D
V
V
VDD = 38V
I
D
R
VGS = 10V
nH 6mm (0.25in.)
and center of die contact
VGS = 0V
V
ƒ = 1.0MHz, See Fig.5
V
V
V
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
TJ = 25°C, IF = 101A
di/dt = 100A/µs
Conditions
= 1mA
D
= 10V, ID = 101A
GS
= 25V, ID = 101A
DS
= 55V, VGS = 0V
DS
= 44V, VGS = 0V, TJ = 150°C
DS
= 20V
GS
= -20V
GS
f
= 101A
= 44V
DS
f
= 10V
GS
= 101A
Ω
= 1.1
G
f
G
= 25V
DS
= 0V, VDS = 1.0V, ƒ = 1.0MHz
GS
= 0V, VDS = 44V, ƒ = 1.0MHz
GS
= 0V, VDS = 0V to 44V
GS
Conditions
= 25°C, IS = 101A, VGS = 0V
J
f
D
S
f
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting T
RG = 25Ω , I
I
SD
= 25°C, L = 0.11mH
J
= 101A. (See Figure 12).
AS
≤ 101A, di/dt ≤ 210A/µs, V
DD
≤ V
(BR)DSS
TJ ≤ 175°C
Pulse width ≤ 400µs; duty cycle ≤ 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
oss
while V
is rising from 0 to 80% V
DS
DSS
.
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
,
Limited by T
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
avalanche performance.
2 www.irf.com
Page 3
IRF1405PbF
1000
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
1000
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
T = 25 C
J
°
T = 175 C
J
1000
100
D
I , Drain-to-Source Current (A)
10
0.1 1 10 100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 175 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
°
2.5
I =
D
169A
100
10
D
I , Drain-to-Source Current (A)
V = 25V
DS
1
4 6 8 10 12
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
Page 4
IRF1405PbF
100000
)
F
10000
p
(
e
c
n
a
t
i
c
a
p
a
C
,
1000
C
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
oss
ds
Ciss
Coss
+ Cgd, C
+ C
gd
Crss
100
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
SHORTED
ds
20
I =
101A
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
D
V = 44V
DS
V = 27V
DS
FOR TEST CIRCUIT
0
0 60 120 180 240 300
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
13
1000
10000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
°
T = 175 C
J
100
°
T = 25 C
J
10
SD
I , Reverse Drain Current (A)
V = 0 V
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
V ,Source-to-Drain Voltage (V)
SD
GS
Fig 7. Typical Source-Drain Diode
)
A
(
t
1000
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
100
10
D
Tc = 25°C
Tj = 175°C
Single Pulse
1
100µsec
1msec
10msec
0 1 10 100 1000
V
, Drain-toSource Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF1405PbF
200
LIMITED BY PACKAGE
160
120
80
D
I , Drain Current (A)
40
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
R
V
DS
V
GS
R
G
D
D.U.T.
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)tr
t
d(off)tf
Fig 10b. Switching Time Waveforms
+
V
DD
-
D = 0.50
thJC
0.20
0.1
0.10
0.05
0.02
0.01
0.01
Thermal Response (Z )
0.001
0.00001 0.0001 0.001 0.01 0.1
SINGLE PULSE
(THERMAL RESPONSE)
t , Rectangular Pulse Duration (sec)
1
P
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
J DM thJC C
t
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1405PbF
15V
DRIVER
+
-
V
R
G
20V
V
DS
t
L
D.U.T
I
AS
0.01
p
Ω
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
DD
1200
TOP
1000
800
600
400
200
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature ( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4.0
I
D
41A
71A
101A
°
V
G
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
DS
-
I
D
Fig 13b. Gate Charge Test Circuit
3.5
)
V
(
e
c
3.0
a
i
r
a
V
,
)
2.5
h
t
(
S
G
V
2.0
1.5
-75 -50 -25 0 25 50 75 100 125 150 175
ID = 250µA
TJ , Temperature ( °C )
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
IRF1405PbF
1000
Duty Cycle = Single Pulse
)
A
(
100
t
n
e
r
r
u
C
e
h
c
n
a
l
10
a
v
A
1
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses
Notes on Repetitive Avalanche Curves , Figures 15, 16:
600
TOP Single Pulse
500
)
J
m
(
y
g
r
400
e
n
E
e
h
300
c
n
a
l
a
v
200
A
,
R
A
E
100
0
25 50 75 100 125 150 175
BOTTOM 10% Duty Cycle
ID = 101A
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
every part type.
2. Safe operation in Avalanche is allowed as long asT
not exceeded.
. This is validated for
jmax
jmax
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t
Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
P
= 1/2 ( 1.3·BV·Iav) = D T/ Z
D (ave)
I
2D T/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
·f
av
D (ave)·tav
thJC
www.irf.com 7
is
Page 8
IRF1405PbF
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
+
-
-
+
R
G
V
GS
• dv/dt controlled by R
• I SD controlled by Duty Factor "D"
G
• D.U.T. - Device Under Test
+
V
DD
-
* Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D =
P. W .
Period
VGS=10V
[ ] ***
D.U.T. ISDWaveform
Reverse
Recovery
Current
Re-Applied
Voltage
D.U.T. VDSWaveform
Inductor Curent
*** V
= 5.0V for Logic Level and 3V Drive Devices
GS
Fig 17. For N-channel HEXFET
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple ≤ 5%
®
power MOSFETs
V
DD
[ ]
I
[ ]
SD
8 www.irf.com
Page 9
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
IRF1405PbF
( ; $ 0 3/( 7 + ,6 , 6$1 ,5)
/27 & 2 '(
$6 6(0% / ( ' 21::
,1 7+ ( $6 6(0% / </,1( &
1 R W H 3 LQDVVH PEO\OLQHSRVLW LRQ
LQGLFDW HV/H D G ) U H H
,17 ( 51 $ 7 ,21$/
5( & 7 ,),( 5
/ 2*2
$66 (0% / <
/27&2'(
3$57 180%( 5
'$7(&2'(
< ( $5
:(( .
/,1( &
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/2008
www.irf.com 9