Datasheet IRF1404ZSPBF Datasheet

Page 1
Features
Absolute Maximum Ratings
D
DM
Pulsed Drain Current
c
GS
Single Pulse Avalanche Energy
d
Single Pulse Avalanche Energy Tested Value
h
Avalanche Current
c
Repetitive Avalanche Energy
g
J
STG
Mounting Torque, 6-32 or M3 sc rew
i
Thermal Resistance
θ
θ
300 (1.6mm from case )
10 lbfyin (1.1N
y
m)
1.3
l Advanced Process Technology l Ultra Low On-Resistance l 175°C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax l Lead-Free
Description
This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on­resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.
G
TO-220AB
IRF1404ZPbF
PD - 96040C
IRF1404ZPbF
IRF1404ZSPbF
IRF1404ZLPbF
HEXFET® Power MOSFET
V
D
(BR)DSS
typ. 2.7m
R
DS(on)
max. 3.7m
I
D (Silicon Limited)
I
S
D (Package Limi ted)
D2Pak
IRF1404ZSPbF
IRF1404ZLPbF
40V
180A
120A
TO-262
Ω
Ω
l
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V A
@ TC = 25°C Continuous Drain Current, VGS @ 10V
I I PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
V E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T T
Gate-to-Sour ce Voltage V
Operating Junction and Storage Temperature Range °C
Soldering Temperature, for 10 seconds
(Silicon Limited)
(P ackage Li mited)
See Fig.12a, 12b, 15, 16
Max.
l
180
l
120
l
120
710 200
± 20
330 480
-55 to + 175
mJ
A
mJ
Parameter Typ. Max. Units
k
R
JC
R
CS
θ
R
JA
θ
R
JA
Junction-to-Case –––
Case-to-Sink, Flat Greased Surface
Junction- to- Ambient
Junction-to-Ambient (PCB Mount)
i
i
j
0.50 –––
––– 62
––– 40
0.75
°C/W
www.irf.com 1
06/19/12
Page 2
IRF1404Z/S/LPbF
Electrical Characteristics @ T
= 25°C (unless otherwise specified)
m
Ω
Source-Drain Ratings and Characteristics
S
120
l
SM
(Body Diode)
c
SD
rr
rr
on
showing the
p-n junction diode.
J
J
Parameter Min. Typ. Max. Units
V
(BR)DSS
Δ
V
(BR)DSS
R
DS(on)
V
GS(th )
gfs Forwar d Trans conductance 170 ––– ––– V I
DSS
I
GS S
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 1350 –––
oss
Drain-to-Source Breakdown Voltage 40 ––– ––– V
/ΔTJ Break down Voltage Temp. Coefficient ––– 0.033 ––– V/°C
Static Drain-to-Sourc e O n-Res istanc e ––– 2.7 3.7 Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250 Gate-to-Sourc e F orward Leakage ––– ––– 200 nA
Gate-to-Sourc e Revers e Leak age ––– ––– -200 Total Gate Charge ––– 100 150 Gate-to-Sourc e C harge ––– 31 ––– nC Gate-to-Drain ("Miller") Charge ––– 42 –––
Turn-On Delay Time ––– 18 ––– Rise Time ––– 110 ––– Turn-Off Delay Time ––– 36 ––– ns
Fall Time ––– 58 ––– Inter nal Dr ain Inductanc e ––– 4.5 ––– Between lead,
Internal Source Inductance ––– 7.5 ––– from package
Input Capac itance ––– 4340 ––– Output Capacitance ––– 1030 ––– Reverse T ransfer Capac itanc e ––– 550 ––– pF
Output Capacitance ––– 3300 ––– Output Capacitance ––– 920 –––
VGS = 0V, ID = 250μA
Reference to 25°C, I V
= 10V, ID = 75A
GS
= VGS, ID = 150μA
V
DS
VDS = 25V, ID = 75A** V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
VGS = 20V
V
= -20V
GS
I
= 75A**
D
V
= 32V
DS
VGS = 10V
e
VDD = 20V I
= 75A**
D
Ω
R
= 3.0
G
VGS = 10V
e
nH 6mm (0.25in.)
and center of die contact VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz
V
= 0V, VDS = 1.0V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 32V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 32V
GS
Conditions
= 1mA
D
**
e
f
Parameter Min. Typ. Max. Units
I
I
V t Q
t
Continuous Source C urrent ––– –––
(Body Diode) A Pulsed Source Current ––– ––– 750
Diode Forward Voltage ––– ––– 1.3 V Reverse Recovery Time ––– 28 42 ns Reverse Recovery Charge ––– 34 51 nC
Forward Turn-On Time
2 www.irf.com
Conditions
MOSFET symbol
integral reverse
T
= 25°C, IS = 75A**, VGS = 0V TJ = 25°C, IF = 75A**, VDD = 20V di/dt = 100A/μs
Intrinsic turn-on time is negligible (turn-on is dominated by LS +LD)
e
e
Page 3
IRF1404Z/S/LPbF
1000
) A
( t
100
n e
r
r u
C e
c
r
10
u o S
­o
t
­n
i a
r
1
D ,
D
I
4.5V
20μs PULSE WIDTH
0.1
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
) A
(
t n e
r
100
r u
C e
c
r u o S
­o
t
-
10
n
i a
r D
,
D
I
1
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
TJ = 25°C
TJ = 175°C
V
= 15V
DS
20μs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
V
TOP 15V 10V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
GS
8.0V
1000
V
TOP 15V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
10V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
100
D
10
0.1 1 10 100
GS
8.0V
4.5V 20μs PULSE WIDTH
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
) S
(
160
e c n a
t c u d
120
n o c s n a
r T
80
d
r a
w
r o F
40
, s
f G
0
0 40 80 120 160
ID, Drain-to-Source Current (A)
TJ = 175°C
TJ = 25°C
V
= 15V
DS
20μs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
Page 4
IRF1404Z/S/LPbF
8000
6000
) F p
( e
c n a
t
4000
i c a p a
C ,
C
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
gs
gd
ds
Ciss
Coss
Crss
+ Cgd, C
+ C
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
( t n e
r
r u
C n
i a
r D e
s
r e v e
R ,
D S
I
100.0
10.0
TJ = 175°C
TJ = 25°C
1.0
0.1
0.2 0.6 1.0 1.4 1.8
VSD, Source-toDrain Voltage (V)
20
SHORTED
ds
gd
ID= 75A
) V
(
16
e g a
t
l o V
12
e c
r u o S
­o
8
t
­e
t a
G ,
S
4
G
V
0
0 40 80 120 160
VDS= 32V
VDS= 20V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
10000
) A
( t
1000
n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D ,
D
I
100
10
Tc = 25°C Tj = 175°C Single Pulse
1
0 1 10 100 1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100μsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF1404Z/S/LPbF
200
LIMITED BY PACKAGE
160
) A
( t n
120
e
r
r u
C n
i a
r
80
D ,
D
I
40
0
25 50 75 100 125 150 175
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
2.0
e c n a
t s
i s e
R n O e
)
c
d
r
e
u
z
i
o
l
S
a
­m
o
t
r
-
o
n
i
N
(
a
r D
,
) n o
( S D
R
ID = 75A
V
= 10V
GS
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
)
C J h
t
Z (
e s n o p s e
R l a
m
r e h T
0.001
D = 0.50
0.1
0.01
1E-006 1E-005 0.0001 0.001 0.01 0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
t1 , Rectangular Pulse Duration (sec)
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1404Z/S/LPbF
A
15V
DRIVER
+
V
DD
-
R
20V
V
V
DS
G
GS
L
D.U.T
I
AS
Ω
0.01
t
p
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
V
G
Q
GD
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
.2μF
12V
V
GS
3mA
.3μF
D.U.T.
+
V
DS
-
600
) J
m
( y
500
g
r e n E
400
e h c n a
l a
300
v A
e s
l u
200
P e
l g n
i S
100
, S A
E
0
25 50 75 100 125 150 175
I
TOP 31A 53A BOTTOM 75A
Starting TJ, Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4.0
) V
( e
g a
t
l o
3.0
V d
l o h s e
r h
t e
t a
2.0
G
) h
t
( S G
V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature ( °C )
ID = 250μA
D
I
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
I
G
D
Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
Page 7
10000
IRF1404Z/S/LPbF
Duty Cycle = Single Pulse
1000
) A
( t n e
r
r u
C
100
e h c n a
l a v A
10
1
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ΔTj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
400
TOP Single Pulse BOTTOM 10% Duty Cycle
) J
m
300
( y
g
r e n E
e
200
h c n a
l a v A ,
100
R A
E
0
25 50 75 100 125 150 175
ID = 75A
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
. This is validated for
jmax
2. Safe operation in Avalanche is allowed as long asT not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ΔT = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
av
·f
jmax
is
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
Fig 16. Maximum Avalanche Energy
Vs. Temperature
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
www.irf.com 7
Page 8
IRF1404Z/S/LPbF
Reverse Recovery Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
+
-
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
R
D.U.T.
D
+
V
DD
-
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 18b. Switching Time Waveforms
8 www.irf.com
Page 9
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
IRF1404Z/S/LPbF
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
Note: "P" in assembly line position
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
LOT CODE 1789 ASSEMBLED ON WW 19, 2000 IN THE AS SEMBLY LINE "C"
indicates "L ead - F ree"
INTE RNATIONAL
RECT IFIER
LOGO
AS S E MB L Y LOT CODE
www.irf.com 9
PART NUMBER
DAT E CODE YEAR 0 = 2000 WE EK 19 LINE C
Page 10
IRF1404Z/S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
THIS IS AN IRF530S WITH LOT CODE 8024
AS S E MBL E D ON WW 02 , 2 00 0 IN THE ASSEMBLY LINE "L"
INTERNAT IONAL
RECTIFIER
LOGO
ASSEMBLY LOT CODE
F530S
OR
INTE RNATIONAL
RECTIFIER
LOGO
ASSEMBLY LOT CODE
F530S
PART NUMBER
DATE CODE P = DESIGNAT ES LEAD - FREE
YE AR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10 www.irf.com
PART NUMBE R
DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
PRODUCT (OPTIONAL)
Page 11
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IRF1404Z/S/LPbF
TO-262 Part Marking Information
EXAMPLE : T HIS IS AN IRL 3103L
LOT CODE 1789 ASS EMBL ED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
INTER NATIONAL
RECTIFIE R
LOGO
ASSEMBLY LOT CODE
OR
INTER NATIONAL
RECTIF IER
LOGO
ASSEMBLY LOT CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com 11
PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
PART NUMBER
DATE CODE P = DE S IGNAT E S LE AD- F R EE
PRODU CT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE
Page 12
IRF1404Z/S/LPbF
D2Pak Tape & Reel Information
TRR
FEED DIRECTION
TRL
FEED DI RECTION
1.85 (.073)
1.65 (.065)
10.90 (.429)
10.70 (.421)
4.10 (. 161)
3.90 (. 153)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
16.10 (.634)
15.90 (.626)
1.60 (.063)
1.50 (.059)
1.75 (.069)
1.25 (.049)
15.42 (.609)
15.22 (.601)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
4.72 (.136)
4.52 (.178)
13.50 (.532)
12.80 (.504)
330.00 (14.173) MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by T
RG = 25Ω, I
, starting TJ = 25°C, L = 0.11mH
Jmax
= 75A, VGS =10V. Part not
AS
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.C
eff. is a fixed capacitance that gives the
oss
same charging time as C from 0 to 80% V
Limited by T
DSS
, see Fig.12a, 12b, 15, 16 for
Jmax
oss
while V
is rising
DS
.
typical repetitive avalanche performance.
This value determined from sample failure
population. 100% tested to this value in production.
This product has been designed and qualified for theIndustrial market.
27.40 (1.079)
23.90 (.941)
4
60.00 (2.362) MIN .
30.40 (1.197)
26.40 (1.039)
24.40 (.961)
MAX.
3
4
 This is only applied to TO-220AB pakcage.  This is applied to D
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
2
Pak, when mounted on 1" square PCB (FR-
TO-220 device will have an Rth value of 0.65°C/W.
Calculated continuous current based on maximum allowable
junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
** All AC and DC test condition based on former Package limited
current of 75A.
Data and specifications subject to change without notice.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/2012
12 www.irf.com
Loading...