Datasheet IRF1404PBF Specification

Page 1
PD-94968B
IRF1404PbF
l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l Fully Avalanche Rated l Lead-Free
Description
G
HEXFET® Power MOSFET
D
V
= 40V
DSS
R
S
= 0.004Ω
DS(on)
= 202A
I
D
Seventh Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation
TO-220AB
levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 202 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 143 A I
DM
PD @TC = 25°C Power Dissipation 333 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 1.5 V/ns T
J
T
STG
Pulsed Drain Current 808
Linear Derating Factor 2.2 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 620 mJ Avalanche Current See Fig.12a, 12b, 15, 16 A Repetitive Avalanche Energy mJ
Operating Junction and -55 to + 175 Storage Temperature Range -55 to + 175 Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.45 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
www.irf.com 1
04/11/12
Page 2
IRF1404PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
ΔV
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 2249 ––– VGS = 0V, VDS = 0V to 32V
oss
Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250μA
/ΔT
Breakdown Voltage Temp. Coefficient ––– 0.039 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 0.0035 0.004 Ω VGS = 10V, ID = 121A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250μA Forward Transconductance 76 ––– ––– S VDS = 25V, ID = 121A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200
μA
nA
V
= 40V, VGS = 0V
DS
VGS = -20V Total Gate Charge ––– 131 196 ID = 121A Gate-to-Source Charge ––– 36 ––– nC VDS = 32V Gate-to-Drain ("Miller") Charge ––– 37 56 VGS = 10V Turn-On Delay Time ––– 17 ––– VDD = 20V Rise Time ––– 190 ––– ID = 121A Turn-Off Delay Time ––– 46 ––– RG = 2.5Ω
ns
Fall Time ––– 33 ––– RD = 0.2Ω
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 5669 ––– VGS = 0V Output Capacitance ––– 1659 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 223 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 6205 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 1467 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
D
G
S
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
202
808
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 121A, VGS = 0V Reverse Recovery Time ––– 78 117 ns TJ = 25°C, IF = 121A Reverse RecoveryCharge ––– 163 245 nC di/dt = 100A/μs  Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
 Starting T
RG = 25Ω, I
I
SD
= 25°C, L = 85μH
J
= 121A. (See Figure 12)
AS
121A, di/dt 130A/μs, V
DD
V
(BR)DSS
Pulse width 400μs; duty cycle 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
Calculated continuous current based on maximum allowable
,
junction temperature. Package limitation current is 75A.
oss
while V
is rising from 0 to 80% V
DS
DSS
TJ ≤ 175°C
2 www.irf.com
D
S
Page 3
IRF1404PbF
1000
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
1000
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20μs PULSE WIDTH T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
T = 25 C
J
T = 175 C
J
°
°
1000
100
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
D
I , Drain-to-Source Current (A)
20μs PULSE WIDTH
°
T = 175 C
1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
2.0
I =
D
202A
1.5
100
1.0
(Normalized)
D
I , Drain-to-Source Current (A)
V = 25V
DS
10
4 5 6 7 8 9 10 11 12
V , Gate-to-Source Voltage (V)
GS
20μs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
Page 4
IRF1404PbF
) F p
( e c n a
t
i c a p a
C ,
C
10000
8000
6000
4000
2000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
oss
ds
Ciss
Coss
+ Cgd, C
Crss
0
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
°
T = 175 C
J
100
+ C
gd
SHORTED
ds
20
I =
121A
V , Gate-to-Source Voltage (V)
GS
D
16
12
8
4
V = 32V
DS
V = 20V
DS
FOR TEST CIRCUIT
0
0 50 100 150 200
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
OPERATION IN THIS AREA LIMITED
1000
BY R
DS(on)
13
10us
10
°
T = 25 C
J
1
SD
I , Reverse Drain Current (A)
V = 0 V
0.1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
V ,Source-to-Drain Voltage (V)
SD
GS
Fig 7. Typical Source-Drain Diode
100
D
I , Drain Current (A)I , Drain Current (A)
10
°
= 25 C
C
T T= 175 C Single Pulse
1
1 10 100
°
J
V , Drain-to-Source Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
100us
1ms
10ms
Forward Voltage
4 www.irf.com
Page 5
220
200
180
160
140
120
100
80
D
I , Drain Current (A)
60
40
20
0
25 50 75 100 125 150 175
LIMITED BY PACKAGE
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
IRF1404PbF
R
D.U.T.
t
d(off)tf
D
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
Fig 10b. Switching Time Waveforms
+
V
DD
-
1
D = 0.50
thJC
0.20
0.1
0.10
0.05
0.02
0.01
0.01
Thermal Response (Z )
0.001
0.00001 0.0001 0.001 0.01 0.1
SINGLE PULSE
(THERMAL RESPONSE)
t , Rectangular Pulse Duration (sec)
1
P
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
J DM thJC C
t
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1404PbF
A
15V
DRIVE R
+
-
V
R
G
20V
V
DS
t
L
D.U.T
I
AS
0.01
p
Ω
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
V
G
Q
GD
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
.2μF
12V
V
GS
3mA
.3μF
D.U.T.
+
V
DS
-
DD
1500
TOP
1200
900
600
300
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
4.0
) V
( e
g a
t
l o V
3.0
d
l o h s e
r h
t e
t a
2.0
G
) h
t
( S G
V
-
1.0
-75 -50 -25 0 25 50 75 100 125 150
TJ , Temperature ( °C )
ID = -250μA
I
D
49A 101A 121A
°
I
Current Sampling Resistors
I
G
D
Fig 14. Threshold Voltage Vs. Temperature
Fig 13b. Gate Charge Test Circuit
6 www.irf.com
Page 7
1000
IRF1404PbF
Duty Cycle = Single Pulse
) A
(
100
t n e
r
r u
C e
h c n a
l a
10
v A
1
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
0.01
0.05
0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ΔTj = 25°C due to avalanche losses
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
400
TOP Single Pulse
350
) J
m
300
( y
g
r e
250
n E
e h
200
c n a
l a
150
v A ,
R
100
A
E
50
0
25 50 75 100 125 150 175
BOTTOM 10% Duty Cycle ID = 121A
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T every part type.
. This is validated for
jmax
2. Safe operation in Avalanche is allowed as long asT
is not exceeded.
3. Equation below based on circuit and waveforms shown
in Figures 12a, 12b.
4. P
avalanche pulse.
= Average power dissipation per single
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ΔT = Allowable rise in junction temperature, not to exceed
T
(assumed as 25°C in Figure 15, 16).
jmax
t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see figure 11)
thJC
av
·f
jmax
P
= 1/2 ( 1.3·BV·Iav) = DT/ Z
Fig 16. Maximum Avalanche Energy
D (ave)
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
Vs. Temperature
www.irf.com 7
Page 8
IRF1404PbF
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
-
R
G
Driver Gate Drive
P.W.
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance Current Transformer
-
-
dv/dt controlled by R
Driver same type as D.U.T.
G
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D =
P. W .
Period
+
+
V
DD
-
VGS=10V
*
D.U.T. ISDWaveform
Reverse Recovery Current
Re-Applied Voltage
D.U.T. VDSWaveform
Inductor Curent
* V
= 5V for Logic Level Devices
GS
Fig 17. For N-channel HEXFET
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
V
DD
I
SD
®
Power MOSFETs
8 www.irf.com
Page 9
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
IRF1404PbF
EXAMPLE : T HIS I S AN IRF1010
LOT CODE 1789 ASS EMBLED ON WW 19, 2000 IN THE ASSE MBLY LINE "C"
Note: "P" in as sembly line posi tion
indi cates "Lead - F ree"
INTERNATIONAL
RECTIFIE R
LOGO
AS S E MB L Y LOT CODE
PART NUMBER
DATE CODE YEAR 0 = 2000 WEEK 19 LINE C
TO-220 package is not recommended for Surface Mount Application.
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2012
www.irf.com 9
Loading...