Datasheet IRF1404 Datasheet (International Rectifier)

Page 1
PD -91896E
IRF1404
HEXFET® Power MOSFET
l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l Fully Avalanche Rated
G
D
V
= 40V
DSS
R
DS(on)
= 0.004
ID = 162A
Description
Seventh Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 162 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 115 A I
DM
PD @TC = 25°C Power Dissipation 200 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 5.0 V/ns T
J
T
STG
Pulsed Drain Current 650
Linear Derating Factor 1.3 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 519 mJ Avalanche Current 95 A Repetitive Avalanche Energy 20 mJ
Operating Junction and -55 to + 175 Storage Temperature Range -55 to + 175 Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
S
TO-220AB
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.75 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
www.irf.com 1
10/20/00
Page 2
IRF1404
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 1540 ––– VGS = 0V, VDS = 0V to 32V
oss
Drain-to-Source Breakdown Voltage 40 –– – ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.036 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 0.0035 0.004 VGS = 10V, ID = 95A Gate Threshold Voltage 2.0 ––– 4. 0 V VDS = 10V, ID = 250µA Forward Transconductance 106 ––– ––– S VDS = 25V, ID = 60A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 40V, VGS = 0V
µA
nA
VGS = -20V Total Gate Charge –– – 160 200 ID = 95A Gate-to-Source Charge ––– 35 ––– nC VDS = 32V Gate-to-Drain ("Miller") Charge ––– 42 60 VGS = 10V Turn-On Delay Time ––– 17 ––– VDD = 20V Rise Time ––– 140 ––– ID = 95A Turn-Off Delay Time ––– 72 ––– RG = 2.5
ns
Fall Time ––– 26 ––– RD = 0.21
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 7360 ––– VGS = 0V Output Capacitance ––– 1680 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 240 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 6630 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 1490 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
D
G
S
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
162
650
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 95A, VGS = 0V Reverse Recovery Time ––– 71 110 ns TJ = 25°C, IF = 95A Reverse RecoveryCharge – –– 180 270 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Starting T
RG = 25, I
I
SD
= 25°C, L = 0.12mH
J
= 95A. (See Figure 12)
AS
95A, di/dt 150A/µs, V
DD
V
(BR)DSS
Pulse width 300µs; duty cycle 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
Calculated continuous current based on maximum allowable
,
junction temperature. Package limitation current is 75A
oss
while V
is rising from 0 to 80% V
DS
DSS
TJ ≤ 175°C
2 www.irf.com
D
S
Page 3
IRF1404
1000
100
D
I , Drain-to-Source Current (A)
10
0.1 1 10 100
1000
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
T = 25 C
J
°
T = 175 C
J
1000
100
D
I , Drain-to-Source Current (A)
10
0.1 1 10 100
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH T = 175 C
V , Drain-to-Source Voltage (V)
DS
°
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
°
2.0
159A
I =
D
1.5
100
1.0
(Normalized)
D
I , Drain-to-Source Current (A)
V = 25V
DS
10
4.0 5.0 6.0 7.0 8.0 9.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
Vs. Temperature
www.irf.com 3
Page 4
IRF1404
12000
10000
8000
6000
4000
C, Capacitance (pF)
2000
0
1 10 100
V
=
0V,
C
C
C C C
iss
oss
rss
f = 1MHz
+ C + C
C SHORTED
GS
C
=
issgsgd , ds
C
=
rssgd
C
=
oss dsgd
C
V , Drain-to-Source Voltage (V)
DS
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
°
T = 175 C
J
100
20
I =
95A
D
V = 32V
DS
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
0
0 40 80 120 160 200 240
Q , Total Gate Charge (nC)
G
V = 20V
DS
FOR TEST CIRCUIT
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10us
13
100us
1ms
10ms
°
T = 25 C
J
10
SD
I , Reverse Drain Current (A)
V = 0 V
1
0.4 0.8 1.2 1.6 2.0 2.4
V ,Source-to-Drain Voltage (V)
SD
GS
Fig 7. Typical Source-Drain Diode
100
D
I , Drain Current (A)I , Drain Current (A)
10
°
= 25 C
C
T T= 175 C Single Pulse
1
1 10 100
°
J
V , Drain-to-Source Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
200
LIMITED BY PACKAGE
160
120
80
D
I , Drain Current (A)
40
0
25 50 75 100 125 150 175
T , Case Temperature ( C)
C
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
IRF1404
R
D.U.T.
t
d(off)tf
D
V
DS
V
GS
R
G
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
V
DS
90%
10% V
GS
t
d(on)tr
Fig 10b. Switching Time Waveforms
+
V
DD
-
1
D = 0.50
thJC
0.20
0.1
0.10 P
0.05
Thermal Response (Z )
0.01
0.02
0.01
0.00001 0.0001 0.001 0.01 0.1 1
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
t , Rectangular Pulse Duration (sec)
1
J DM thJC C
DM
t
1 2
1
t
2
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF1404
A
15V
DRIVER
+
-
V
R
20V
V
DS
G
t
L
D.U.T
I
AS
0.01
p
Fig 12a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
I
AS
Fig 12b. Unclamped Inductive Waveforms
Q
G
10 V
Q
GS
Q
GD
DD
1200
TOP
1000
800
600
400
200
AS
E , Single Pulse Avalanche Energy (mJ)
0
25 50 75 100 125 150 175
Starting T , Junction Temperature( C)
J
BOTTOM
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
50
I
D 39A 67A 95A
°
V
G
Charge
48
46
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50K
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
DS
-
I
D
Fig 13b. Gate Charge Test Circuit
44
, Avalanche Voltage ( V )
42
DSav
V
40
0 20 40 60 80 100
I
, Avalanche Current ( A)
AV
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
6 www.irf.com
Page 7
IRF1404
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
-
R
G
Driver Gate Drive
P.W.
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance Current Transformer
-
-
dv/dt controlled by R
Driver same type as D.U.T.
G
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D =
P.W.
Period
+
+
V
DD
-
VGS=10V
*
D.U.T. ISDWaveform
Reverse Recovery Current
Re-Applied Voltage
D.U.T. VDSWaveform
Inductor Curent
* V
= 5V for Logic Level Devices
GS
Fig 14. For N-channel HEXFET
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
V
DD
I
SD
®
Power MOSFETs
www.irf.com 7
Page 8
IRF1404
A
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
1.40 (.055)
3X
1.15 (.045)
2.54 (.100)
NOTES: 1 DIM E N S IO NIN G & T O L E R A NC IN G P E R A NS I Y1 4. 5 M , 1 9 8 2 . 3 OU T LIN E C O N FO R M S T O JE D E C O U T L IN E T O -2 2 0 A B . 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
2X
10.29 (.405)
4
1 2 3
3.78 (.149)
3.54 (.139)
- A -
6.47 (.255)
6.10 (.240)
1.15 (.045) M IN
4.06 (.160)
3.55 (.140)
0.93 (.037)
3X
0.69 (.027)
0.36 (.01 4) M B A M
TO-220AB Part Marking Information
EXAMPLE : THIS IS AN IRF1010 W ITH A SS EMBL Y LO T COD E 9 B1 M
INTERN A TION A L RE CTIFIER L OGO
ASSEMBLY LOT C ODE
4.69 (.185)
4.20 (.165)
- B -
1.32 (.052)
1.22 (.048)
3X
2.92 (.115)
2.64 (.104)
I RF1010
9246
9B 1M
LEAD ASSIGNMENTS 1 - GAT E 2 - DRA IN 3 - SOU RC E 4 - DRA IN
0.55 (.022)
0.46 (.018)
PART NUMB ER
DATE CODE (YYWW) YY = YEAR WW = WEEK
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 10/00
8 www.irf.com
Loading...