Datasheet IRCZ24 Datasheet (International Rectifier)

Page 1
HEXFET® Power MOSFET
l Dynamic dv/dt Rating l Current Sense l 175°C Operating Temperature l Fast Switching l Ease of Paralleling l Simple Drive Requirements
Description
Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device, low on-resistance and cost-effectiveness.
The HEXSence device provides an accurate fraction of the drain current through the additional two leads to be used for control or protection of the device. These devices exhibit similar electrical and thermal characteristics as their IRF-series equivalent part numbers. The provision of a kelvin source connection effectively eliminates problems of common source inductance when the HEXSence is used as a fast, high-current switch in non current-sensing applications.
PD - 9.615A
IRCZ24
V
= 55V
DSS
R
= 0.040
DS(on)
ID = 26A
TO-220 HexSense
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 17 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 I
DM
PD @TC = 25°C Power Dissipation 60 W
V
GS
E
AS
dv/dt Peak Diode Recovery dv/dt 4.5 A T
J
T
STG
Pulsed Drain Current 68
Linear Derating Factor 0.40 W/°C Gate-to-Source Voltage ±20 V Single Pulse Avalanche Energy 6.0 mJ
Operating Junction and -55 to + 175 Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case)
Mounting Torque, 6-32 or screw 10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter Min. Max. Units
R
θJC
R
θCS
R
θJA
** When mounted on FR-4 board using minimum recommended footprint. For recommended footprint and soldering techniques refer to application note #AN-994.
Junction-to-Case 2.5 Case-to-Sink, Flat, Greased Surface 0.50 — Junction-to-Ambient 62
A
°C
°C/W
C-1
Page 2
IRCZ24
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(ON)
V
GS(th)
g
fs
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
C
C
iss
C
oss
C
rss
r Current Sensing Ratio 740 ––– 820 ––– ID = 17A, VGS = 10V C
oss
Drain-to-Source Breakdown Voltage 60 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.061 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– ––– 0.10 VGS = 10V, ID = 10A Gate Threshold Voltage 2.0 ––– 4. 0 V VDS = VGS, ID = 250µA Forward Transconductance 5.8 ––– ––– S VDS = 25V, ID = 10A
Drain-to-Source Leakage CurrentI
––– ––– 25 VDS = 60V, VGS = 0V
––– ––– 250 VDS = 48V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V Total Gate Charge ––– ––– 24 ID = 17A Gate-to-Source Charge ––– ––– 6.3 nC VDS = 48V Gate-to-Drain ("Miller") Charge ––– ––– 9.0 VGS = 10V, See Fig. 6 and 13 Turn-On Delay Time ––– 12 ––– VDD = 30V Rise Time ––– 59 ––– ID = 17A Turn-Off Delay Time ––– 25 ––– RG = 18 Fall Time ––– 38 ––– RD = 1.7Ω, See Fig. 10
Between lead,
Internal Drain Inductance ––– 4.5 ––– Internal Source Inductance ––– 7.5 – ––
6 mm (0.25 in.) from package
nH
and center of die contact
Input Capacitance ––– 720 ––– VGS = 0V Output Capacitance ––– 360 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 75 ––– ƒ = 1.0MHz, See Fig. 5
Output Capacitance of Sensing Cells ––– 14 ––– pF VGS = 0V, VDS = 25V, ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
RG = 25, I
C-2
Continuous Source Current MOSFET symbol (Body Diode) showing the Pulsed Source Current integral reverse (Body Diode) p-n junction diode.
––– ––– 17
––– ––– 68
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 17A, VGS = 0V Reverse Recovery Time –– – 87 180 ns TJ = 25°C, IF = 17A Reverse Recovery Charge ––– 0.29 0.60 nC di/dt = 100A/µs Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
I
17A, di/dt 140A/µs, V
SD
TJ ≤ 175°C
= 25V, starting TJ = 25°C, L = 0.024mH
= 17A. (See Figure 12)
AS
Pulse width 300µs; duty cycle 2%.
D
A
V
DD
(BR)DSS
G
S
,
Page 3
IRCZ24
, Drain Current (Amps)
D
I
VDS, Drain-to-Source Voltage (Volts)
Fig. 1 Typical Output Characteristics,
TC=25°C
, Drain Current (Amps)
D
I
, Drain Current (Amps)
D
I
VDS, Drain-to-Source Voltage (Volts)
Fig. 2 Typical Output Characteristics,
TC=175°C
(Normalized)
, Drain to Source On-Resistance
DS(on)
VDS, Gate-to-Source Voltage (Volts)
R
TJ, Junction Temperature (°C)
Fig. 3 Typical Transfer Characteristics Fig. 4 Normalized On-Resistance vs.
Temperature
C-3
Page 4
IRCZ24
Capacitance (pF)
, Gate-to-Source Voltage (Volts)
GS
V
VDS, Drain-to-Source Voltage (Volts)
Fig. 5 Typical Capacitance vs. Drain-to-
Source V oltage
, Reverse Drain Current (Amps)
SD
I
VSD, Source-to-Drain Voltage (Volts)
Fig. 7 Typical Source-Drain Diode
Forward V oltage
QG, Total Gate Charge (nC)
Fig. 6 Typical Gate Charge vs. Gate-to-
Source V oltage
Drain Current (Amps)
D
I
VDS, Drain-to-Source Voltage (Volts)
Fig. 8 Maximum Safe Operating Area
C-4
Page 5
IRCZ24
, Drain Current (Amps)
D
I
TC, Case Temperature (°C)
Fig. 9 Maximum Drain Current vs. Case
Temperature
)
ΘJC
Thermal Repsonse (Z
, Drain Current (Amps)
D
I
Starting TJ, Junction Temperature (°C)
Fig. 12c Maximum Avalanche Energy
vs. Drain Current
t1, Rectiangular Pulse Duration (seconds)
Fig. 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-5
Page 6
IRCZ24
Sense Ratio (r)Sense Ratio (r)
TJ, Junction Temperature (°C)
Fig. 15 Typical HEXSense Ratio vs.
Junction T emperature
Sense Ratio (r)
ID, Drain Current (Amps)
Fig. 16 Typical HEXSense Ratio vs.
Drain Current
Fig. 18 HEXSense Ratio Test Circuit
VGS, Gate-to-Source Voltage (Volts)
Fig. 17 Typical HEXSense Ratio vs. Gate
Voltage
Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C
C-6
Fig. 19 HEXSense Sensing Cell Output
Capacitance Test Circuit
Loading...