Tolerant to negative transient voltage - dV/dt immune
Gate drive supply range from 10 to 20V (IR2136/IR21368),
•
11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/
IR21366/IR21367)
Undervoltage lockout for all channels
•
Over-current shutdown turns off all six drivers
•
Independent 3 half-bridge drivers
•
Matched propagation delay for all channels
•
Cross-conduction prevention logic
•
Lowside outputs out of phase with inputs. High side
•
outputs out of phase (IR2136/IR21363/IR21365/
IR21366/IR21367/IR21368) or in phase
(IR21362) with inputs.
3.3V logic compatible
•
Lower di/dt gate driver for
•
better noise immunity
Externally programmable
•
delay for automatic fault
clear
Also available LEAD-FREE
•
Description
Part
Input Logic
Ton (typ.)
Toff (typ.)
VIH (typ.)
VIL (typ.)
Vitrip+
UV CC/BS+
UV CC/BS-
IR2136
HIN, LIN
400ns
380ns
2.7V
1.7V
0.46V
8.9V
8.2V
Feature Comparison: IR2136/IR21362/IR21363/
IR21362
HIN/LIN
400ns
380ns
2.7V
1.7V
0.46V
10.4V
9.4V
28-Lead SOIC
28-Lead PDIP
44-Lead PLCC w/o 12 leads
IR21365/IR21366/IR21367/IR21368
IR21363
HIN, LIN
400ns
380ns
2.7V
1.7V
0.46V
11.2V
11.0V
IR21365
HIN, LIN
400ns
380ns
2.7V
1.7V
4.3V
11.2V
11.0V
IR21366
HIN, LIN
250ns
180ns
2.0V
1.3V
0.46V
11.2V
11.0V
IR21367
HIN, LIN
250ns
180ns
2.0V
1.3V
4.3V
11.2V
11.0V
IR21368
HIN,LIN
400ns
380ns
2.0V
1.3V
4.3V
8.9V
8.2V
The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET
and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications.
Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS
or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from
an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An
open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.
Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network
connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The
floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which
operates up to 600 volts.
Typical Connection
HIN1,2,3 / HIN1,2,3
(Refer to Lead Assignments for correct pin configuration). This/These
diagram(s) show electrical connections only.
Please refer to our Application Notes and
DesignTips for proper circuit board layout.
VCC
LIN1,2,3
FAULT
GND
VCC
HIN1,2,3 / HIN1,2,3
LIN1,2,3
EN
FAULT
EN
RCIN
ITRIP
VSSCOM
VB1,2,3
HO1,2,3
VS1,2,3
LO1,2,3
IR2136(2)(3)(5)(6)(7)(8)
up to 600V
TO
LOAD
www.irf.com1
Page 2
IR2136(2)(3)(5)(6)(7)(8)
(
J& S) & (PbF
)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board
mounted and still air conditions.
SymbolDefinitionMin.Max.Units
V
S
V
BS
V
HO
V
CC
V
SS
V
LO1,2,3
V
IN
V
FLT
dV/dtAllowable offset voltage slew rate—50V/ns
P
D
Rth
JA
T
J
T
S
T
L
High side offset voltageV
B1,2,3
- 25 V
B1,2,3
+ 0.3
High side floating supply voltage-0.3625
High side floating output voltageV
S1,2,3
- 0.3 V
B1,2,3
+ 0.3
Low side and logic fixed supply voltage-0.325
Logic groundV
- 25V
CC
CC
+ 0.3
Low side output voltage-0.3VCC + 0.3
Input voltage LIN,HIN,ITRIP, EN, RCINVSS - 0.3lower of
(V
+ 15) or
SS
V
+ 0.3)
CC
FAULT output voltageVSS - 0.3V
Package power dissipation @ T
≤ +25°C (28 lead PDIP)—1.5
A
CC
+ 0.3
(28 lead SOIC)—1.6
(44leadPLCC)—2.0
Thermal resistance, junction to ambient(28 lead PDIP)—83
(28 lead SOIC)—78
(44 lead PLCC)—63
Junction temperature—150
Storage temperature-55150
Lead temperature (soldering, 10 seconds)—300
V
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
SymbolDefinitionMin.Max.Units
V
B1,2,3
V
S1,2,3
V
HO1,2,3
V
LO1,2,3
V
CC
V
SS
V
FLT
V
RCIN
Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS.
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
2www.irf.com
High side floating supply voltage IR2136(8)V
IR21362 V
IR2136(3)(5)(6)(7)V
S1,2,3
S1,2,3
S1,2,3
10V
+
11.5 V
+
12V
+
S1,2,3
S1,2,3
S1,2,3
High side floating supply offset voltageNote 1600
High side output voltageV
S1,2,3
Low side output voltage0V
V
B1,2,3
CC
Low side and logic fixed supply voltage IR2136(8)1020
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
SymbolDefinitionMin.Max.Units
V
ITRIP
V
IN
T
A
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
ITRIP input voltageV
Logic input voltage , HIN (IR2136,IR21363(5)(6)(7)(8)),
HIN(IR21362), ENV
Ambient temperature-40125
SS
SS
V
SS
V
SS
+5
+5
V
o
C
Static Electrical Characteristics
V
BIAS (VCC
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: H
SymbolDefinitionMin. Typ. Max. Units Test Conditions
V
V
V
V
V
RCIN,TH+
V
RCIN,HYS
V
V
, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
V
IH
V
EN,TH+
EN,TH-
IT,TH+
IT,HYS
V
OH
V
OL
CCUV+VCC
BSUV+
Logic “0” input voltage LIN1,2,3, HIN1,2,3
Logic “1” input voltage HIN1,2,3IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8)2.5——
Logic “1” input voltage LIN1,2,3, HIN1,2,3
IL
Logic “0” input voltage HIN1,2,3IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8)——0.8
EN positive going threshold——3
EN negative going threshold0.8——
ITRIP positive going threshold
ITRIP input hysteresis
RCIN positive going threshold—8—
RCIN input hysteresis—3—
High level output voltage, V
Low level output voltage, V
positive going threshold IR213629.610.411.2
and L
O1,2,3
IR2136(3)(5)3.0——
IR2136(3)(5)——0.8
IR2136(2)(3)(6)0.370.460.55
IR21365(7)(8)3.854.304.75
IR2136(2)(3)(6)—0.07—
IR21365(7)(8)—.15—
- V
BIAS
O
O
and VBS supply undervoltage IR2136(8)8.08.99.8
IR21363(5)(6)(7)10.611.111.6
O1,2,3.
—0.91.4IO = 20 mA
—0.40.6IO = 20 mA
V
)
www.irf.com3
Page 4
IR2136(2)(3)(5)(6)(7)(8)
(
J& S) & (PbF
)
Static Electrical Characteristics cont.
V
BIAS (VCC
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: H
SymbolDefinitionMin. Typ. Max. Units Test Conditions
V
V
V
V
V
IN, CLAMP Input clamp voltage (HIN, LIN, ITRIP and EN)
I
I
R
ON,RCIN
R
, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
and L
CCUV-
BSUV-
CCUVH
BSUVH
I
LK
I
QBS
I
QCC
I
LIN+
I
LIN-
I
HIN+
I
HIN-
ITRIP+
ITRIP-
I
EN+
I
EN-
I
RCIN
I
O+
I
O-
ON,FLT
O1,2,3
V
and V
CC
negative going thresholdIR213628.69.410.2
V
and VBS supply undervoltage IR21360.30.7—
CC
lockout hysteresisIR213620.51.0—
Offset supply leakage current——50V
Quiescent VBS supply current—70120
Quiescent VCC supply current—1.62.3mA
Input bias current (LOUT = HI) IR2136(2)(3)(5)—200300 V
Input bias current (LOUT = LO) IR2136(2)(3)(5)—100220V
Input bias current (HOUT = HI)IR2136(3)(5)—200300V
Input bias current (HOUT = LO)IR2136(3)(5)—100220V
“high” ITRIP input bias current—30100V
“low” ITRIP input bias current—01V
“high” ENABLE input bias current—30100V
“low” ENABLE input bias current—01V
RCIN input bias current—01V
Output high short circuit pulsed current120200—V
Output low short circuit pulsed current250350—V
RCIN low on resistance—50100
FAULT low on resistance—50100
supply undervoltage IR2136(8)7.48.29.0
BS
IR21363(5)(6)(7)10.410.911.4
IR21363(5)—0.2—
IR21366(7)(8)
IR21366(7)(8)
IR21366(7)(8)
IR21362(6)(7)(8)
O1,2,3.
IR21362
V
µA
4.95.25.5VI
—01
—01
—30100
—01
—01
µA
mA
Ω
B1,2,3=VS1,2,3=600V
V
= 0V or 5V
IN
IN =100µA
LIN = 5V
LIN = 0V
HIN = 5V
HIN = 0V
= 5V
ITRIP
= 0V
ITRIP
= 5V
ENABLE
= 0V
ENABLE
= 0V or 15V
RCIN
=0V, PW ≤ 10 µs
O
=15V, PW ≤10 µs
O
4www.irf.com
Page 5
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
Dynamic Electrical Characteristics
VCC = VBS = V
SymbolDefinition Min. Typ.Max. Units Test Conditions
ITRIP to output shutdown propagation delay5007501000V
ITRIP blanking time100150—VIN = 0V or 5V
ITRIP to FAULT propagation delay400600800V
Input filter time (HIN, LIN, EN)100200—VIN = 0 & 5V
(IR2136(2)(3)(5)(8) only)
FAULT clear time RCIN: R=2meg, C=1nF1.31.652mSV
(ton,toff are applicable to all 3 channels)
= VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified.
S1,2,3
IR21366(7)—250—
IR21366(7)—180—
) - min (ton,t
off
),—2570
off
nS
nS
VIN = 0 & 5V
= 0V or 5V
IN, VEN
= 5V
ITRIP
V
= 5V
ITRIP
= 0V or 5V
IN
V
= 5V
ITRIP
= 0V or 5V
IN
V
= 0V
ITRIP
External dead
time
>400nsec
)
VCC VBS ITRIPENABLEFAULTLO1,2,3HO1,2,3
<UVCC X XX0 (note 1)00
15V <UVBS 0V5Vhigh impLIN1,2,30
15V 15V 0V5Vhigh impLIN1,2,3 HIN1,2,3
15V 15V >V
ITRIP
5V0 (note 2)00
15V 15V 0V0Vhigh imp00
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.
Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.
Note 2: When ITRIP <V
www.irf.com5
, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)
ITRIP
Page 6
IR2136(2)(3)(5)(6)(7)(8)
Functional Block Diagram
(
J& S) & (PbF
)
HIN1
LIN1
HIN2
LIN2
HIN3
LIN3
VSS
ITRIP
RCIN
FAULT
EN
+
-
0.5V
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
UV
DETECT
S
SET
DOMINANT
R
LATCH
IR2136/21363/21365
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
Q
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
SET
RESET
SET
RESET
DELAY
DELAY
DELAY
LATCH
UV
DETECT
LATCH
UV
DETECT
LATCH
UV
DETECT
DRIVER
DRIVER
DRIVER
DRIVER
DRIVER
DRIVER
VB1
HO1
VS1
VB2
HO2
VS2
VB3
HO3
VS3
VCC
LO1
LO2
LO3
COM
6www.irf.com
Page 7
Functional Block Diagram
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
)
HIN1
LIN1
HIN2
LIN2
HIN3
LIN3
VSS
ITRIP
RCIN
FAULT
EN
+
-
0.5V
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
INPUT
NOISE
FILTER
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DEADTIME &
SHOOT-THROUGH
PREVENTION
DETECT
S
SET
DOMINANT
R
LATCH
UV
Q
IR21362
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
RESET
RESET
RESET
DELAY
DELAY
DELAY
SET
LATCH
UV
DETECT
DRIVER
HO1
VS1
VB2
VB1
SET
LATCH
UV
DETECT
DRIVER
HO2
VS2
VB3
SET
LATCH
UV
DETECT
DRIVER
HO3
VS3
VCC
DRIVER
DRIVER
DRIVER
LO1
LO2
LO3
COM
www.irf.com7
Page 8
IR2136(2)(3)(5)(6)(7)(8)
Functional Black Diagram
(
J& S) & (PbF
)
HIN1
LIN1
HIN2
LIN2
HIN3
LIN3
VSS
EN
ITRIP
RCIN
FAULT
IR21366/IR21367/IR21368
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
LATCH
UV
DETECT
DRIVER
VB1
HO1
VS1
VB2
SET
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
RESET
LATCH
UV
DETECT
DRIVER
HO2
VS2
VB3
SET
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
RESET
LATCH
UV
DETECT
DRIVER
HO3
VS3
VCC
S
DOMINANT
R
DETECT
SET
LATCH
UV
Q
INPUT
NOISE
FILTER
+
-
INPUT
NOISE
FILTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFTER
DELAY
DELAY
DELAY
DRIVER
DRIVER
DRIVER
LO1
LO2
LO3
COM
8www.irf.com
Page 9
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
Lead Definitions
Symbol Description
V
CC
VSSLogic Ground
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8)
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)
LIN1,2,3 Logic inputs for low side gate driver outputs (LO1,2,3), out of phase
FAULTIndicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,
ENLogic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is
ITRIPAnalog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates
RCINExternal RC network input used to define FAULT CLEAR delay, T
COMLow side gate driver return
VB1,2,3High side floating supply
HO1,2,3High side gate driver outputs
V
S1,2,3
LO1,2,3Low side gate driver output
Low side and logic fixed supply
open-drain output
high. No effect on FAULT and not latched
FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally
set time T
to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance
High voltage floating supply returns
, then automatically becomes inactive (open-drain high impedance).
FLTCLR
FLTCLR
, approximately equal
)
Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
www.irf.com9
Page 10
IR2136(2)(3)(5)(6)(7)(8)
Lead Assignments
(
J& S) & (PbF
)
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
FAULT
ITRIP
EN
RCIN
VSS
COM
LO3
IR2136
8
9
10
11
12
13
14
VB1
HO1
VS1
VB2
HO2
VS2
VB3
HO3
VS3
LO1
LO2
28
27
26
25
24
23
22
21
20
19
18
17
16
15
LIN1
LIN2
LIN3
FAULT
ITRIP
RCIN
7
8
9
10
11
12
13
14
15
16
EN
17
18
VCC
HIN1
HIN2
HIN3
44 LEAD PLCC w/o 12 LEADS
IR2136
19 20 21 22 23 24 25
COM
LO3
VSS
VS1
HO1
VB1
41
42433456
37
VB2
36
HO2
35
VS2
31
VB3
30
HO3
29
VS3
LO2
LO1
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
FAULT
ITRIP
EN
RCIN
VSS
COM
LO3
IR2136
8
9
10
11
12
13
14
VB1
HO1
VS1
VB2
HO2
VS2
VB3
HO3
VS3
LO1
LO2
28
27
26
25
24
23
22
21
20
19
18
17
16
15
28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)
IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (J) IR2136/IR21363(5)(6)(7)(8) (S)
VS1
HO1
LO3
LO2
VB1
LO1
1
42433456
37
VB2
36
HO2
35
VS2
31
VB3
30
HO3
29
VS3
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
41
VCC
VB1
HO1
VS1
VB2
HO2
VS2
VB3
HO3
VS3
LO1
LO2
VCC
HIN1
HIN2
LIN1
LIN2
LIN3
HIN3
7
8
9
10
11
12
13
14
15
16
EN
17
18
19 20 21 22 23 24 25
VSS
COM
1
VCC
2
HIN1
3
HIN2
4
HIN3
5
LIN1
6
LIN2
7
LIN3
8
FAULT
9
ITRIP
10
EN
11
RCIN
12
VSS
13
COM
14
LO3
VB1
HO1
VS1
VB2
HO2
VS2
VB3
HO3
VS3
LO1
LO2
28
27
26
25
24
23
22
21
20
19
18
17
16
15
FAULT
ITRIP
RCIN
28
27
26
25
24
23
22
21
20
19
18
17
16
15
28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)
IR21362 IR21362J IR21362S
10www.irf.com
Page 11
HIN1,2,3
HIN1,2,3
LIN1,2,3
FAULT
ITRIP
RCIN
EN
HO1,2,3
LO1,2,3
IR2136(2)(3)(5)(6)(7)(8)
Figure 1. Input/Output Timing Diagram
(
J&S) & (PbF
)
LIN1,2,3
HIN1,2,3
LIN1,2,3
HIN1,2,3
HO1,2,3
LO1,2,3
Figure 2. Switching Time Waveforms
50%50%
PW
IN
50%50%
tontrtftoff
PW
OUT
90%
50%
EN
ten
HO1,2,3
90%
LO1,2,3
90%
10%10%
Figure 3. Output Enable Timing Waveform
www.irf.com11
Page 12
IR2136(2)(3)(5)(6)(7)(8)
(
J& S) & (PbF
)
LIN1,2,3
HIN1,2,3
LIN1,2,3
HIN1,2,3
LO1,2,3
HO1,2,3
50%50%
50%50%
50%50%
DTDT
50%50%
Figure 4. Internal Deadtime Timing Waveforms
RCIN
ITRIP
FAULT
50%
tflt
50%
50%
Vrcin,th+
50%
Any
output
90%
titrip
tfltclr
Figure 5. ITRIP/RCIN Timing Waveforms
HIN/LIN
on
t
in,fil
onon off
offoff
t
in,fil
U
high
HO/LO
Figure 5.5 Input Filter Function
low
12www.irf.com
Page 13
IR2136(2)(3)(5)(6)(7)(8)
pply
)
p
(
J&S) & (PbF
)
1000
800
600
Max.
Typ.
400
Min.
200
Turn-on Propagation Delay (ns)
0
-50-250255075100125
Temperature (
o
C)
Figure 6A. Turn-on Pr opagation Delay vs.
Temperature
1000
800
Max.
600
Typ.
400
Min.
200
Turn-on Propagation Delay (ns
0
33.544.55
Input Voltage (V )
Figure 6C. Turn-on Propagat ion Delay vs.
ut Voltage
In
1000
800
Max.
600
Typ.
400
Min.
200
Turn-on Propagation Delay (ns)
0
101214161820
Supply Voltage (V)
Figure 6B. Turn-on Propagation Delay vs.
Voltage
Su
1000
800
600
Max.
Typ.
400
Min.
200
Turn-off Propagation Delay (ns)
0
-50-250255075100125
Temperature (
o
C)
Figure 7A. Turn-off Propagation Delay vs.
Temperatur e
www.irf.com13
Page 14
IR2136(2)(3)(5)(6)(7)(8)
)
p
)
)
(
J& S) & (PbF
)
1000
800
Max.
600
Typ.
400
Min.
200
Turn-off Propagation Delay (ns)
0
101214161820
Supply Volt age (V)
Figure 7B. Turn-off Propagation Delay vs.
Supply Voltage
400
300
1000
800
Max.
600
Typ.
400
Min.
200
Turn-off Propagation Delay (ns
0
33.544.55
Input Voltage (V)
Figure 7C. Turn-off Propagation Delay vs.
ut Voltage
In
400
300
Max.
200
Max.
100
Turn-on Rise Time (ns
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 8A. Turn-on Rise Time vs. Temperature
14www.irf.com
200
Typ.
Turn-on Rise Time (ns
100
0
101214161820
Supply Voltage (V)
Figure 8B. Tur n-on Rise Time vs. Supply Voltage
Page 15
IR2136(2)(3)(5)(6)(7)(8)
)
pply
(
J&S) & (PbF
)
200
150
100
Max.
Turn-off Fall Time (ns)
50
Typ.
0
-50-25 0 255075100125
Temperature (oC)
Figure 9A. Turn-off Fall Time vs. Temperature
1000
800
600
Max.
Typ.
400
Min.
200
EN to Output Shutdown Time (ns)
0
-50-250255075100125
Temperature (
o
C)
Figure 10A. EN to Output Shutdown Time
vs. Temperature
200
150
100
Max.
Typ.
Turn-off Fall Time (ns
50
0
101214161820
Supply Voltage (V)
Figure 9B. Turn-off Fall Time vs. Supply Voltage
1000
800
Max.
600
Typ.
400
Min.
200
EN to Output Shutdown Time (ns)
0
101214161820
Supply Volt age (V)
Figure 10B. EN to Output Shutdown Time vs.
Voltage
Su
www.irf.com15
Page 16
IR2136(2)(3)(5)(6)(7)(8)
g
)
(
J& S) & (PbF
)
1000
800
Max.
600
Typ.
400
Min.
200
EN to Output Shutdown Time (ns)
0
33.544.55
EN Voltage (V)
Figure 10C. EN to Output Shutdown Time
vs. EN Volta
e
1500
1200
Max.
900
Typ.
Min.
600
300
0
ITRIP to Output Shutdown Time (ns
101214161820
Supply Volt age (V)
Figure 11B. ITRIP to Output Shutdown
Time vs. Supply Voltage
1500
1200
Max.
900
Typ.
600
Min.
300
ITRIP to Output Shutdown Time (ns)
0
-50-250255075100125
Temperature (
o
C)
Figure 11A. ITRIP to Output Shutdown Time vs.
Temperatur e
1200
1000
Max.
800
Typ.
600
Min.
400
200
ITRIP to FAULT Indication Time (ns)
0
-50-250 255075100125
Temperature (
o
C)
Figure 12A. ITRIP to FAULT Indication Time vs.
Temperature
16www.irf.com
Page 17
IR2136(2)(3)(5)(6)(7)(8)
pply
(
J&S) & (PbF
)
1200
1000
Max.
800
Typ.
600
Min.
400
Fault Indication Time (ns)
200
0
101214161820
Supply Voltage (V)
Figure 12B. ITRIP to FAULT Indication Time vs.
Su
Voltage
3.0
2.5
Max.
2.0
Typ.
1.5
Min.
Fault Clear Time (ms)
1.0
3.0
2.5
Max.
2.0
Typ.
1.5
Min.
FAULT Clear Time (ms)
1.0
0.5
-50-250255075100125
Temperat ure (oC)
Fig13A. FAULT Clear Time vs. Temperature
600
500
400
Max.
300
Typ.
Min.
200
Dead Time (ns)
100
0.5
101214161820
Supply Voltage (V )
Figure 13B. FAULT Clear Time vs. Supply Voltage
0
-50-250255075100125
Temperature (
o
C)
Figure 14A. Dead Time vs. Temperature
www.irf.com17
Page 18
IR2136(2)(3)(5)(6)(7)(8)
(
J& S) & (PbF
)
600
500
Max.
400
Typ.
300
Min.
Dead Time (ns)
200
100
0
101214161820
Supply Voltage (V )
Figure 14B. Dead Time Time vs. Supply Voltage
6
5
4
Max.
3
6
5
4
Max.
3
2
1
Logic "0" Input Threshold (V)
0
-50-250255075100125
Temperature (
o
C)
Figure 15A. Logic "0" Input Threshold vs.
Temperatur e
6
5
4
3
2
Logic "0" Input Threshold (V)
1
0
101214161820
Supply Voltage (V )
Figure 15B. Logic "0" Input Threshold vs.
Supply Voltage
2
Min.
1
Logic "1" Input Threshold (V)
0
-50-250255075100125
Temperature (
o
C)
Figure 16A. Logic "1" Input Threshold vs.
Temperature
18www.irf.com
Page 19
IR2136(2)(3)(5)(6)(7)(8)
pply
V
0
V
V
(
J&S) & (PbF
)
6
5
4
3
2
Min.
Logic "1" Input Threshold (V)
1
0
101214161820
Supply Voltage (V)
Figure 16B. Logic "1" Input Threshold vs.
Su
Voltage
800
700
600
M ax.
500
Typ.
Min.
400
800
700
600
Max.
500
Typ.
Min.
400
300
ITRIP Positive Going Threshold (m
200
-50-250255075100125
o
Temperature (
C)
Figure 17A. ITRIP Positive Going Threshold vs.
Temperature (IR2136/21362/21363/ IR21366 Only)
5.5
5.0
M ax.
4.5
Typ.
4.0
Min.
300
200
ITRIP Positive Going Threshold (m
10121416182
Supply Voltage (V)
Figure 17B. ITRIP Positive Going Threshold vs.
Supply Voltage (IR2136/21362/21363/IR21366 Only)
3.5
ITRIP Positive Going Threshold (
3.0
-50-250255075100125
o
Temperat ure (
C)
Figure 17C. ITRIP Positive Going Threshold vs.
Temperature (IR21365/IR21367/IR21368 Only)
www.irf.com19
Page 20
IR2136(2)(3)(5)(6)(7)(8)
V
(
J& S) & (PbF
)
5.5
5.0
Max.
4.5
Typ.
Min.
4.0
3.5
ITRIP Positive Going Threshold (
3.0
1214161820
Supply Voltage (V)
Figure 17D. ITRIP Positive Going Threshold vs.
Supply Voltage (IR21365/IR21367/IR21368 Only)
3.0
2.5
2.0
Max.
1.5
Typ.
1.0
0.5
High Level Output Voltage (V)
0.0
101214161820
Supply Voltage (V)
Figure 18B. High Level Output vs. Supply Voltage
3.0
2.5
2.0
1.5
Max.
1.0
Typ.
0.5
High Level Output Voltage (V)
0.0
-50-250255075100125
Temperature (
o
C)
Figure 18A. High Level Output vs. Temperature
1.2
1.0
0.8
0.6
Max.
0.4
Typ.
0.2
Low Level Output Voltage (V)
0.0
-50-250255075100125
Temperature (
o
C)
Figure 19A. Low Level Output vs. Temperature
20www.irf.com
Page 21
IR2136(2)(3)(5)(6)(7)(8)
V
.
(
J&S) & (PbF
)
1.2
1.0
0.8
Max.
0.6
0.4
Typ.
0.2
Low Level Output Voltage (V)
0.0
101214161820
Supply V oltage (V )
Figure 19B. Low Level Output vs. Supply Voltage
12
11
Max
10
Typ.
9
Min.
8
Undervoltage Lockout (+) (
BS
7
or V
-50-250255075100 125
CC
V
Temperature (
o
C)
Figur e 20. VCC or VBS Undervoltage (+)
vs. Te m pe r ature (IR2136/IR21368 Only)
11
10
Max.
9
Typ.
8
Min.
Undervoltage Lockout (-) (V)
BS
7
or V
CC
6
V
-50-25 0 25 50 75100125
Temperature (
o
C)
Figure 21. VCC or VBS Undervoltage (-)
vs. Temperature (IR2136/IR21368 Only)
13
12
Max.
11
Typ.
10
Min.
Undervoltage Lockout (+) (V)
BS
9
or V
CC
8
V
-50-25 0 255075100125
Temperature (
o
C)
Figure 22. VCC or VBS Undervoltage (+) vs.
Temperature (IR21362 Only)
www.irf.com21
Page 22
IR2136(2)(3)(5)(6)(7)(8)
)
(
y)
5
.
(
J& S) & (PbF
)
12
11
Max.
10
Typ.
9
Min.
Undervoltage Lockout (-) (V
BS
8
or V
CC
V
7
-50-250255075100125
Temperature (
o
C)
Figure 23. VCC or VBS Undervoltage (-) vs.
Temperat ure
IR21362 Onl
13
12
Max.
11
Typ
Min.
10
Undervoltage Lockout (-) (V)
BS
9
or V
-50-25025507510012
CC
V
Temperature (oC)
Figure 25. VCC or VBS Undervoltage (-) vs.
Te mperature (IR21363/21365/IR21366/IR21367 Only)
13
12
M ax.
Typ.
11
Undervoltage Lockout (+) (V)
BS
or V
CC
V
Min.
10
-50-250255075100125
Temperatur e (
o
C)
Fig u r e 24. VCC or VBS Undervoltage (+) vs.
Te m pe rature (IR21363/21365/IR21366/IR21367 Only)
500
A)
µ
400
300
200
100
Max.
Offset Supply Leakage Current (
0
-50-250255075100125
Temperature (
o
C)
Figure 26A. Offset Supply Leakage Current vs.
Temperature
22www.irf.com
Page 23
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
)
500
400
300
200
100
Max.
Offset Supply Leakage Current ( A)
0
100200300400500600
V
Boost Voltage (V)
B
Figure 26B. Offset Supply Leakage Current vs.
Boost Voltage
V
250
200
150
250
200
A)
µ
150
Max.
100
Supply Current (
BS
V
50
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 27A. VBS Supply Current vs. Temperature
5
4
3
100
Max.
Supply Current ( A)
BS
V
50
Typ.
0
101214161820
V
Float ing Supply Volt age (V)
BS
Figure 27B. VBS Supply Current vs.
V
Floating Supply Voltage
BS
2
Max.
Supply Current (mA)
CC
1
V
Typ.
0
-50-25 0 255075100125
o
Temperature (
C)
Figure 28A. VCC Supply Current vs. Temperature
www.irf.com23
Page 24
IR2136(2)(3)(5)(6)(7)(8)
(
J& S) & (PbF
)
5
4
3
2
Max.
Supply Current (mA)
CC
V
1
Typ.
0
101214161820
Supply Voltage (V)
Figure 28B. VCC Supply Current vs.
V
Supply Voltage
CC
800
600
800
A)
µ
600
400
Max.
200
Logic "1" Input Current (
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 29A. Logic "1" Input Current vs. Temperat ure
(IR2136/21363/21365 and IR21362 Low Side Only)
300
250
A)
µ
200
400
Max.
200
Logic "1" Input Current ( A)
Typ.
0
101214161820
Supply Vol tage (V)
Figure 29B. Logic "1" Input Cur rent vs. Supply Voltage
(IR2136/21363/21365 and IR21362 Low Side Only)
150
Max.
100
50
Logic "1" Input Current (
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 29C. Logic "1" Input Current vs.
Temperature (IR21362 High Side Only)
24www.irf.com
Page 25
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
)
300
250
200
150
Max.
100
Logic "1" Input Current ( A)
50
Typ.
0
101214161820
Supply Voltage (V)
Figure 29D. Logic "1" Input Current vs.
Supply Volt age (IR21362 High Side Only)
600
500
400
600
500
A)
µ
400
300
200
Max.
100
Logic "0" Input Current (
0
-50-250255075100125
Typ.
Temperature (
o
C)
Figure 30A. Logic "0" Input Current vs. Temperature
(IR2136/21363/21365 and IR21362 Low Side Only)
4
A)
µ
3
300
200
Max.
100
Logic "0" Input Current ( A)
Typ.
0
101214161820
Supply Voltage (V)
Figure 30B. Logic "0" Input Current vs. Supply
Voltage (IR2136/ 21363/21365 a nd IR21362 Low Side
Only)
2
Max.
1
Logic "0" Input Current (
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 30C. Logic "0" Input Current vs.
Temperature (IR21362 High Side Only)
www.irf.com25
Page 26
IR2136(2)(3)(5)(6)(7)(8)
y)
(
J& S) & (PbF
)
4
3
2
Max.
1
Logic "0" Input Current ( A)
Typ.
0
101214161820
Supply Voltage (V)
Figure 30D. Logic "0" Input Current vs.
Supply Voltage (IR21362 High Side Onl
250
200
150
Max.
100
"High" ITRIP Current ( A)
Typ.
50
0
101214161820
Suppl y Voltage (V)
250
200
A)
µ
150
100
Max.
50
"High" ITRIP Current (
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 31A. "High" ITRIP Current vs. Temperature
4
A)
µ
3
2
Max.
1
"Low" ITRIP Current (
Typ.
0
-50-250255075100125
Temperature (
o
C)
Figure 31B. "High" ITRIP Current vs. Supply Voltage
Figure 32A. "Low" ITRIP Current vs. Temperature
26www.irf.com
Page 27
IR2136(2)(3)(5)(6)(7)(8)
(
J&S) & (PbF
)
4
3
2
Max.
1
"Low" ITRIP Current ( A)
Typ.
0
101214161820
Supply Voltage (V)
Figure 32B. "Low" ITRIP Current vs. Supply Voltage