Datasheet IR212 Datasheet (International Rrectifier)

Page 1
查询IR2132供应商
Data Sheet No. PD-6.033E
IR2132
3-PHASE BRIDGE DRIVER
Features
n Floating channel designed for bootstrap operation
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
n Gate drive supply range from 10 to 20V n Undervoltage lockout for all channels n Over-current shutdown turns off all six drivers n Independent half-bridge drivers n Matched propagation delay for all channels n Outputs out of phase with inputs
Description
The IR2132 is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels . Proprietary HVIC technology enables ruggedized monolithic con­struction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A ground-referenced oper ational amplifier provides analog feedback of bridge current via an external current sense resistor. A current tr ip function which terminates all six outputs is also de­rived from this resistor. An open drain indicates if an over-current or undervoltage shutdo wn has occurred. The output drivers feature a high pulse current buffer stage designed for minimum dri ver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating chan­nels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which oper­ate up to 600 volts.
FAULT signal
Product Summary
V
OFFSET
IO+/- 200 mA / 420 mA
V
OUT
t
(typ.) 675 & 425 ns
on/off
Deadtime (typ.) 0.8 µs
600V max.
10 - 20V
Packages
Typical Connection
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-165
Page 2
IR2132
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param­eters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Parameter Value
Symbol Definition Min. Max. Units
V
B1,2,3
V
S1,2,3
V
HO1,2,3
V
CC
V
SS
V
LO1,2,3
V
IN
V
FLT
V
CAO
V
CA-
dVS/dt Allowable Offset Supply Voltage Transient 50 V/ns
P
D
R
θJA
T
J
T
S
T
L
High Side Floating Supply Voltage -0.3 525 High Side Floating Offset Voltage V High Side Floating Output Voltage V
B1,2,3
S1,2,3
- 25 V
- 0.3 V
B1,2,3 B1,2,3
+ 0.3
+ 0.3
Low Side and Logic Fixed Supply Voltage -0.3 25 Logic Ground VCC - 25 V Low Side Output Voltage -0.3 V Logic Input Voltage (
HIN1,2,3 , LIN1,2,3 & ITRIP) V
FAULT Output Voltage V
- 0.3 V
SS
- 0.3 V
SS
Operational Amplifier Output Voltage VSS - 0.3 V Operational Amplifier Inverting Input Voltage VSS - 0.3 V
CC CC CC CC CC CC
+ 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3
V
Package Power Dissipation @ TA +25°C (28 Lead DIP) 1.5
(28 Lead SOIC) 1.6 W
(44 Lead PLCC) 2.0
Thermal Resistance, Junction to Ambient (28 Lead DIP) 83
(28 Lead SOIC) 78 °C/W
(44 Lead PLCC) 63 Junction Temperature 150 Storage Temperature -55 150 °C Lead Temperature (Soldering, 10 seconds) 300
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
Parameter Value
Symbol Definition Min. Max. Units
V
B1,2,3
V
S1,2,3
V
HO1,2,3
V
CC
V
SS
V
LO1,2,3
V
IN
V
FLT
V
CAO
V
CA-
T
A
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).
B-166 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
High Side Floating Supply Voltage V
S1,2,3
+ 10 V
S1,2,3
+ 20 High Side Floating Offset Voltage Note 1 600 High Side Floating Output Voltage V
S1,2,3
V
B1,2,3
Low Side and Logic Fixed Supply Voltage 10 20 Logic Ground -5 5 Low Side Output Voltage 0 V Logic Input Voltage (
Output Voltage V
FAULT
Operational Amplifier Output Voltage V Operational Amplifier Inverting Input Voltage V
HIN1,2,3 , LIN1,2,3 & ITRIP) V
SS SS SS SS
CC
VSS + 5
V
CC
5 5
Ambient Temperature -40 125 °C
V
Page 3
IR2132
Dynamic Electrical Characteristics
V
(VCC, V
BIAS
electrical characteristics are defined in Figures 3 through 5.
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
t
on
t
off
t
r
t
f
t
itrip
t
bl
t
flt
t
flt,in
t
fltclr
DT Deadtime 18 0.4 0.8 1.2 V
SR+ Operational Amplifier Slew Rate (+) 19 4.4 6.2
SR- Operational Amplifier Slew Rate (-) 20 2.4 3.2
Static Electrical Characteristics
V
(VCC, V
BIAS
are referenced to VSS and are applicable to all six logic input leads: are referenced to V
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
V
IH
V
IL
V
IT,TH+
V
OH
V
OL
I
LK
I
QBS
I
QCC
I
IN+
I
IN-
I
ITRIP+
I
ITRIP-
V
BSUV+
V
BSUV-
V
CCUV+
V
CCUV-
R
on,FLT
BS1,2,3
) = 15V, V
= VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic
S0,1,2,3
Parameter Value
Tur n-On Propagation Delay 11 500 675 850 Tur n-Off Propagation Delay 12 300 425 550 V Turn-On Rise Time 13 80 125 V Tur n-Off Fall Time 14 35 55 ITRIP to Output Shutdown Prop. Delay 15 4 00 6 60 920 VIN, V
ns
ITRIP Blanking Time 400 V ITRIP to
Indication Delay 16 335 590 845 V
FAULT
Input Filter Time (All Six Inputs) 310 V
LIN1,2,3
to
Clear Time 17 6.0 9.0 12.0 V
FAULT
µs
S1,2,3
, V
IN
, V
IN
IN
IN
IN
= 0 & 5V
= 0 to 600V
= 0 & 5V
ITRIP
= 1V
ITRIP
= 0 & 5V
ITRIP
= 0 & 5V
= 0 & 5V
ITRIP
= 0 & 5V
V/µs
BS1,2,3
) = 15V, V
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
S0,1,2,3
= VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
S0,1,2,3
HIN1,2,3
&
LIN1,2,3. The V
and IO parameters
O
Parameter Value
Logic “0” Input Voltage (OUT = LO) 21 2.2 — Logic “1” Input Voltage (OUT = HI) 22 0.8 ITRIP Input Positive Going Threshold 23 400 490 580 High Level Output Voltage, V
- VO 24 100 mV VIN = 0V, IO = 0A
BIAS
Low Level Output Voltage , VO 25 100 VIN = 5V, IO = 0A Offset Supply Leakage Current 26 50 VB = VS = 600V Quiescent VBS Supply Current 27 15 30 VIN = 0V or 5V Quiescent VCC Supply Current 28 3.0 4.0 mA VIN = 0V or 5V Logic “1” Input Bias Current (OUT = HI) 29 450 650 VIN = 0V Logic “0” Input Bias Current (OUT = LO) 30 225 400 µA VIN = 5V “High” ITRIP Bias Current 31 75 150 ITRIP = 5V “Low” ITRIP Bias Current 32 10 0 nA ITRIP = 0V VBS Supply Undervoltage Positiv e Going 33 7.5 8.35 9.2 Threshold VBS Supply Undervoltage Negative Going 34 7.1 7.95 8.8 Threshold VCC Supply Undervoltage Positive Going 35 8.3 9.0 9.7 Threshold VCC Supply Undervoltage Negative Going 3 6 8.0 8.7 9.4 Threshold
FAULT
Low On-Resistance 37 55 75
V
µA
V
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-167
Page 4
IR2132
Static Electrical Characteristics -- Continued
V
(VCC, V
BIAS
are referenced to V are referenced to V
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
I
O+
I
O-
V
OS
I
CA-
CMRR Op. Amp. Common Mode Rejection Ratio 42 60 80 VS0=V
PSRR Op. Amp. Power Supply Rejection Ratio 43 55 75 VS0 = V
V
OH,AMP
V
OL,AMP
I
SRC,AMP
I
SRC,AMP
I
O+,AMP
I
O-,AMP
) = 15V, V
BS1,2,3
and are applicable to all six logic input leads:
SS
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
S0,1,2,3
= VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
S0,1,2,3
HIN1,2,3
&
LIN1,2,3
. The V
and IO parameters
O
Parameter Value
Output High Short Circuit Pulsed Current 38 200 250 VO = 0V, V
Output Low Short Circuit Pulsed Current 39 420 500 VO = 15V, V
mA
Operational Amplifer Input Offset Voltage 40 30 mV VS0 = V CA- Input Bais Current 41 4.0 n A V
dB
Op. Amp. High Level Output Voltage 44 5.0 5.2 5.4 V V Op. Amp. Low Level Output Voltage 45 20 mV V Op. Amp. Output Source Current 46 2.3 4.0 V
Op. Amp. Output Sink Current 47 1.0 2.1 V
Operational Amplifier Output High Short 48 4.5 6.5 V
mA
Circuit Current V Operational Amplifier Output Low Shor t 49 3.2 5.2 V
Circuit Current V
PW10 µs
PW10 µs
CA-
= 2.5V
CA-
=0.1V & 5V
CA-
CA-
VCC = 10V & 20V
= 0V, VS0 = 1V
CA-
= 1V, VS0 = 0V
CA-
= 0V, VS0 = 1V
CA-
V
CAO
= 1V, VS0 = 0V
CA-
V
CAO
= 0V, VS0 = 5V
CA-
CAO
= 5V, VS0 = 0V
CA-
CAO
IN
IN
= 0.2V
= 0.2V
= 4V
= 2V
= 0V
= 5V
= 0V
= 5V
Lead Assignments
28 Lead DIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body)
IR2132 IR2132J IR2132S
Part Number
B-168 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Page 5
Functional Block Diagram
IR2132
Lead Definitions
Lead
Symbol Description
HIN1,2,3 LIN1,2,3 FAULT
V
CC
ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier V
SS
V
B1,2,3
HO1,2,3 High side gate drive outputs V
S1,2,3
LO1,2,3 Low side gate drive outputs V
S0
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply
Logic ground High side floating supplies
High side floating supply returns
Low side return and positive input of current amplifier
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-169
Page 6
IR2132
Device Information
Process & Design Rule HVDCMOS 4.0 µm Transistor Count 700 Die Size 126 X 175 X 26 (mil) Die Outline
Thickness of Gate Oxide 800Å Connections Material Poly Silicon
First Width 4 µm Layer Spacing 6 µm
Thickness 5000Å
Material Al - Si (Si: 1.0% ±0.1%) Second Width 6 µm Laye r Spacing 9 µm
Thickness 20,000Å
Contact Hole Dimension 8 µm X 8 µm Insulation Layer Material PSG (SiO2)
Thickness 1.5 µm
Passivation Material PSG (SiO2) (1) Thickness 1.5 µm Passivation Material Proprietary* (2) Thickness Proprietary* Method of Saw Full Cut Method of Die Bond Ablebond 84 - 1 Wire Bond Method Thermo Sonic
Material Au (1.0 mil / 1.3 mil)
Leadframe Material Cu
Die Area Ag
Lead Plating Pb : Sn (37 : 63)
Pa ckage Types 28 Lead PDIP & SOIC / 44 Lead PLCC
Materials EME6300 / MP150 / MP190
Remarks: * P atent Pending
B-170 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Page 7
HIN1,2,3
LIN1,2,3
IR2132
ITRIP
FAULT
HO1,2,3
LO1,2,3
IR2132
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage T ransient Test Circuit
HIN1,2,3
50% 50%
HIN1,2,3 LIN1,2,3
50% 50%
LIN1,2,3
LO1,2,3
HO1,2,3
50% 50%
DT DT
HO1,2,3 LO1,2,3
t
r
on
90% 90%
10% 10%
t
off
t
Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switc hing Time Waveform
Definitions
LIN1,2,3
ITRIP
FAULT
50%
50% 50%
50%
V
S0
CA-
V
CC
+
­V
SS
t
f
CAO
LO1,2,3
t
flt
t
itrip
50%
t
fltclr
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions
V
SS
Figure 6. Diagnostic Feedback Operational Amplifier
Circuit
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-171
Page 8
IR2132
T
s)
T
s)
15V
V
+
-
90%
10%
CC
V
SS
SR- =
CAO
50 pF
V
T2
0V
3V
0V
3V
CA­V
S0
T1 ∆T2
V
SR+ =
V
T1
Figure 7. Operational Amplifier Slew Rate
Measurement
15V
V
CC
-
CA-
+
V
S0
Measure V
CAO1
V
CAO2
CMRR = -20*LOG
V
SS
at VS0 = 0.1V
at V
= 5V
S0
(V
-0.1V) - (V
CAO1
4.9V
CAO
CAO2
-5V)
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements
(dB)
15V
20k
V
CC
+
­V
SS
=
V
OS
V
CAO
21
CAO
- 0.2V
0.2V
V
S0
CA-
+
1k
Figure 8. Operational Amplifier Input Offset Voltage
Measurement
V
CC
V
S0
0.2V
+
CA-
-
+
20k
1k
Measure V
PSRR = -20*LOG
V
SS
CAO1
V
CAO2
CAO
at VCC = 10V at V
= 20V
CC
V
- V
CAO1
(10V) (21)
CAO2
Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
urn-On Delay Time (µ
0.30
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
B-172 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
urn-On Delay Time (µ
0.30
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 11B. T urn-On Time vs. V oltageFigure 11A. T urn-On Time vs. T emperature
Page 9
IR2132
T
)
T
) s)
s)
T
)
T
)
1.00
0.80
0.60
Max.
Typ.
0.40
urn-Off Delay Time (µs
Min.
0.20
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.00
0.80
Max.
0.60
Typ.
0.40
Min.
urn-Off Delay Time (µs
0.20
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 12A. Turn-Off Time vs. Temperature Figure 12B. Turn-Off Time vs. Voltage
250
200
150
Max.
100
Turn-On Rise Time (n
Typ.
50
250
200
Max.
150
Typ.
100
Turn-On Rise Time (n
50
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage
125
100
75
50
Max.
urn-Off Fall Time (ns
Typ.
25
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage
125
100
75
Max.
50
Typ.
urn-Off Fall Time (ns
25
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-173
Page 10
IR2132
)
)
L
s)
I
s)
I
s)
L
s)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
ITRIP to Output Shutdown Delay Time (µs
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Temperature
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
TRIP to FAULT Indication Delay Time (µ
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
ITRIP to Output Shutdown Delay Time (µs
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 15B. ITRIP to Output Shutdown Time vs. VoltageFigure 15A. ITRIP to Output Shutdown Time vs.
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
TRIP to FAULT Indication Delay Time (µ
0.00
-50 -25 0 25 50 75 100 125
Figure 16A. ITRIP to
Temperature (°C)
Indication Time vs.
FAULT
Temperature
25.0
20.0
15.0
Max.
Typ.
10.0
Min.
IN1,2,3 to FAULT Clear Time (µ
5.0
0.0
-50 -25 0 25 50 75 100 125
Figure 17A.
LIN1,2,3
Temperature (°C)
FAULT
to
Clear Time vs.
Temperature
B-174 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
0.00 10 12 14 16 18 20
Figure 16B. ITRIP to
V
Supply Voltage (V)
CC
FAULT
Indication Time vs.
Voltage
25.0
20.0
15.0
Max.
Typ.
10.0
Min.
IN1,2,3 to FAULT Clear Time (µ
5.0
0.0 10 12 14 16 18 20
Figure 17B.
LIN1,2,3
V
Supply Voltage (V)
CC
FAULT
to
Clear Time vs. Voltage
Page 11
IR2132
s)
s)
s)
s)
D
)
)
2.50
2.00
1.50
Max.
eadtime (µs
Typ.
1.00
Min.
0.50
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
2.50
2.00
1.50
Max.
1.00
Deadtime (µs
Typ.
Min.
0.50
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 18A. Deadtime vs. Temperature Figure 18B. Deadtime vs. Voltage
10.0
8.0
Typ.
6.0
Min.
4.0
Amplifier Slew Rate + (V/µ
2.0
10.0
8.0
Typ.
6.0
Min.
4.0
Amplifier Slew Rate + (V/µ
2.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage
5.00
4.00
Typ.
3.00
Min.
2.00
Amplifier Slew Rate - (V/µ
1.00
0.00
-50 -25 0 25 50 75 100 125
Figure 20A. Amplifier Slew Rate (-) vs. Temperature Figure 20B. Amplifier Slew Rate (-) vs. Voltage
Temperature (°C)
5.00
4.00
Typ.
3.00
Min.
2.00
Amplifier Slew Rate - (V/µ
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-175
Page 12
IR2132
)
I
)
L
)
L
)
L
)
L
)
5.00
4.00
3.00
Min.
2.00
ogic "0" Input Threshold (V
1.00
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
5.00
4.00
3.00
Min.
2.00
ogic "0" Input Threshold (V
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 21A. Logic “0” Input Threshold vs. Temperature Figure 20B. Logic “0” Input Threshold vs. Voltage
5.00
4.00
3.00
2.00
ogic "1" Input Threshold (V
1.00
Max.
5.00
4.00
3.00
2.00
ogic "1" Input Threshold (V
1.00
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 22A. Logic “1” Input Threshold vs. Temperature Figure 22B. Logic “1” Input Threshold vs. Voltage
750
Max.
600
Typ.
450
Min.
300
150
ITRIP Input Positive Going Threshold (mV
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 23A. ITRIP Input Positive Going Threshold
vs. Temperature
B-176 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
0.00 10 12 14 16 18 20
750
Max.
600
Typ.
450
Min.
300
150
TRIP Input Positive Going Threshold (mV
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
V
Supply Voltage (V)
CC
Figure 23B. ITRIP Input Positive Going Threshold
vs. Voltag e
Page 13
IR2132
H
)
L
)
H
)
L
)
O
)
O
)
1.00
0.80
0.60
0.40
igh Level Output Voltage (V
0.20
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.00
0.80
0.60
0.40
igh Level Output Voltage (V
0.20
Max.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 24A. High Level Output vs. Temperature Figure 24B. High Level Output vs. Voltag e
1.00
0.80
0.60
0.40
ow Level Output Voltage (V
0.20
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.00
0.80
0.60
0.40
ow Level Output Voltage (V
0.20
Max.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage
500
400
300
200
ffset Supply Leakage Current (µA
100
Max.
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 26A. Offset Supply Leakage Current
500
400
300
200
ffset Supply Leakage Current (µA
100
Max.
0
0 100 200 300 400 500 600
V
Boost Voltage (V)
B
Figure 26B. Offset Supply Leakage Current vs. Voltage
vs. Temperature
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-177
Page 14
IR2132
V
)
V
)
V
)
V
)
L
)
L
)
100
80
60
40
Supply Current (µA
BS
Max.
20
Typ.
0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Figure 27A. V
Supply Current vs. Temperature Figure 27B. VBS Supply Current vs. Voltage
BS
10.0
8.0
6.0
4.0
Supply Current (mA
Max.
CC
Typ.
2.0
100
80
60
40
Supply Current (µA
BS
Max.
20
Typ.
0
10 12 14 16 18 20
V
Floating Supply Voltage (V)
BS
10.0
8.0
6.0
4.0
Supply Current (mA
CC
Max.
2.0
Typ.
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 28A. VCC Supply Current vs. Temperature Figure 28B. VCC Supply Current vs. Voltage
1.25
1.00
0.75
0.50
Max.
Typ.
ogic "1" Input Bias Current (mA
0.25
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 29A. Logic “1” Input Current vs. Temperature Figure 29A. Logic “1” Input Current vs. Voltage
B-178 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
1.25
1.00
0.75
0.50
Max.
Typ.
ogic "1" Input Bias Current (mA
0.25
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Page 15
IR2132
)
L
)
L
)
"
)
)
)
1.25
1.00
0.75
0.50
Max.
ogic "0" Input Bias Current (mA
0.25
Typ.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.25
1.00
0.75
0.50
ogic "0" Input Bias Current (mA
Max.
0.25
Typ.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 30A. Logic “0” Input Current vs. Temperature Figure 30B. Logic “0” Input Current vs. Voltage
500
400
300
200
Max.
"High" ITRIP Bias Current (µA
100
Typ.
500
400
300
200
Max.
"High" ITRIP Bias Current (µA
100
Typ.
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltage
250
200
150
100
Max.
Low" ITRIP Bias Current (nA
50
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
500
400
300
200
"Low" ITRIP Bias Current (µA
Max.
100
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 32A. “L ow” ITRIP Current vs. Temperature Figure 32B. “L ow” ITRIP Current vs. Voltage
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-179
Page 16
IR2132
V
)
)
V
)
V
)
F
s)
F
s)
11.0
10.0
Max.
9.0
Typ.
8.0
Undervoltage Lockout + (V
Min.
BS
7.0
6.0
-50 -25 0 25 50 75 100 125
Figure 33. V
11.0
10.0
9.0
8.0
Undervoltage Lockout + (V
CC
7.0
BS
Max.
Typ.
Min.
Temperature (°C)
Undervoltage (+) vs. Temperature Figure 34. VBS Undervoltage (-) vs. Temperature
11.0
10.0
9.0
Max.
8.0
Typ.
Undervoltage Lockout - (V
BS
V
Min.
7.0
6.0
-50 -25 0 25 50 75 100 125
11.0
10.0
Max.
9.0
Typ.
Min.
8.0
Undervoltage Lockout - (V
CC
7.0
Temperature (°C)
6.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature
250
200
150
100
Max.
AULT- Low On Resistance (ohm
50
Typ.
0
-50 -25 0 25 50 75 100 125
Figure 37A.
Temperature (°C)
FAULT
Low On Resistance vs.
Temperature
B-180 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
6.0
-50 -25 0 25 50 75 100 125
250
200
150
Max.
100
Typ.
AULT- Low On Resistance (ohm
50
0
10 12 14 16 18 20
Figure 37B.
FAULT
Temperature (°C)
V
Supply Voltage (V)
CC
Low On Resistance vs. Voltage
Page 17
IR2132
O
)
O
)
O
)
O
)
A
)
500
400
Typ.
300
Min.
200
utput Source Current (mA
100
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
500
400
300
200
Typ.
utput Source Current (mA
100
Min.
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 38A. Output Source Current vs. Temperature Figure 38B. Output Source Current vs. Volta ge
750
Typ.
600
Min.
450
300
utput Sink Current (mA
150
750
625
500
375
Typ.
250
utput Sink Current (mA
Min.
125
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0
10 12 14 16 18 20
Supply Voltage (V)
V
BIAS
Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage
50
40
Max.
30
20
Amplifier Input Offset Voltage (mV
10
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 40A. Amplifier Input Offset vs. Temperature Figure 40B. Amplifier Input Offset vs. Voltage
50
40
30
Max.
20
mplifier Input Offset Voltage (mV)
10
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-181
Page 18
IR2132
)
) )
A
)
A
)
)
10.0
8.0
6.0
Max.
4.0
CA- Input Bias Current (nA
2.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
10.0
8.0
6.0
Max.
4.0
CA- Input Bias Current (nA
2.0
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 41A. CA- Input Current vs. Temperature Figure 41B. CA- Input Current vs. Volta ge
100
Typ.
80
Min.
60
40
Amplifier CMRR (dB
20
100
Typ.
80
Min.
60
40
mplifier CMRR (dB
20
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Volta ge
100
80
Typ.
60
Min.
40
mplifier PSRR (dB
20
0
-50 -25 0 25 50 75 100 125
Figure 43A. Amplifier PSRR vs. Temperature
Temperature (°C)
B-182 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
0
10 12 14 16 18 20
100
80
Typ.
60
Min.
40
Amplifier PSRR (dB
20
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
V
Supply Voltage (V)
CC
Figure 43B. Amplifier PSRR vs. Voltage
Page 19
IR2132
)
)
A
)
A
)
A
)
A
)
6.00
5.70
5.40
Max.
Typ.
5.10
Min.
4.80
Amplifier High Level Output Voltage (V
4.50
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 44A. Amplifier High Level Output vs.
Temperature
100
80
60
40
Max.
20
mplifier Low Level Output Voltage (mV
6.00
5.70
Max.
5.40
Typ.
5.10
Min.
4.80
Amplifier High Level Output Voltage (V
4.50 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 44B. Amplifier High Level Output vs. Voltage
100
80
60
40
Max.
20
mplifier Low Level Output Voltage (mV
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 45A. Amplifier Low Level Output vs.
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 45B. Amplifier Low Level Output vs. Voltage
Temperature
10.0
8.0
6.0
Typ.
4.0
Min.
mplifier Output Source Current (mA
2.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 46A. Amplifier Output Source Current vs.
Temperature
10.0
8.0
6.0
4.0
Typ.
mplifier Output Source Current (mA
2.0
Min.
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 46B. Amplifier Output Source Current vs.
Voltage
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-183
Page 20
IR2132
O
)
)
O
)
A
)
)
A
)
5.00
4.00
3.00
Typ.
2.00
Min.
mplifier Output Sink Current (mA
1.00
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 47A. Amplifier Output Sink Current vs.
Temperature
15.0
12.0
9.0
Max.
6.0
Typ.
utput High Short Circuit Current (mA
3.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 48A. Amplifier Output High Short Circuit
Current vs. Temperature
5.00
4.00
3.00
2.00
Typ.
mplifier Output Sink Current (mA
Min.
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 47B. Amplifier Output Sink Current vs. Voltage
15.0
12.0
9.0
6.0
Max.
utput High Short Circuit Current (mA
3.0
Typ.
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltage
15.0
12.0
9.0
Max.
6.0
Typ.
3.0
Output Low Short Circuit Current (mA
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 49A. Amplifier Output Low Short C ircuit Current
vs. Temperature
B-184 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
15.0
12.0
9.0
6.0
Max.
3.0
Output Low Short Circuit Current (mA
Typ.
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 49B. Amplifier Output Low Short Circuit Current
vs. Voltag e
Page 21
IR2132
J
)
J
)
J
)
J
)
)
50
45
40
35
30
unction Temperature (°C
25
20
1E+2 1E+3 1E +4 1E+5
Figure 50. IR2132 T
R
100
80
60
unction Temperature (°C
40
20
1E+2 1E+3 1E+4 1E+5
GATE
Frequency (Hz)
vs. Frequency (IRF820)
J
ΩΩ
= 33
, VCC = 15V
ΩΩ
Frequency (Hz)
Figure 52. IR2132 TJ vs. Frequency (IRF840)
R
GATE
ΩΩ
= 15
, VCC = 15V
ΩΩ
480V
0V
480V
320V
160V
0V
320V
160V
50
45
40
35
30
unction Temperature (°C
25
20
1E+2 1E+3 1E+4 1E+5
Figure 51. IR2132 T
R
140
120
100
80
60
unction Temperature (°C
40
20
1E+2 1E+3 1E+4 1E+5
GATE
Frequency (Hz)
vs. Frequency (IRF830)
J
ΩΩ
= 20
, VCC = 15V
ΩΩ
Frequency (Hz)
Figure 53. IR2132 TJ vs. Frequency (IRF450)
R
GATE
ΩΩ
= 10
, VCC = 15V
ΩΩ
480V
320V
160V 0V
480V
320V
160V
0V
0.0
-3.0
Typ.
-6.0
-9.0
Offset Supply Voltage (V
S
V
-12.0
-15.0 10 12 14 16 18 20
Figure 54. Maximum V
V
Floating Supply Voltage (V)
BS
Negative Offset vs. V
S
BS
Supply
Voltage
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-185
Loading...