Datasheet IKW30N60T Datasheet (INFINEON)

Page 1
IKW30N60T
TrenchStop
®
Series q
Low Loss DuoPack : IGBT in TrenchStop
®
and Fieldstop technology
with soft, fast recovery anti-parallel EmCon HE diode
Very low V
1.5 V (typ.)
CE(sat)
Maximum Junction Temperature 175 °C
Short circuit withstand time – 5µs
Designed for :
- Frequency Converters
- Uninterruptible Power Supply
TrenchStop
®
and Fieldstop technology for 600 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
- low V
Positive temperature coefficient in V
CE(sat)
CE(sat)
Low EMI
Low Gate Charge
Very soft, fast recovery anti-parallel EmCon HE diode
Qualified according to JEDEC
1
for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
V
I
CE
V
C
CE(sat),Tj=25°C
T
Marking Package
j,max
PG-TO-247-3-21
C
G
E
IKW30N60T 600V 30A 1.5V
175°C
K30T60 PG-TO-247-3-21
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
DC collector current, limited by T
T
= 25°C
C
= 100°C
T
C
jmax
Pulsed collector current, tp limited by T
Turn off safe operating area (V
Diode forward current, limited by T
T
= 25°C
C
= 100°C
T
C
Diode pulsed current, tp limited by T
600V, Tj 175°C)
CE
jmax
jmax
Gate-emitter voltage
Short circuit withstand time2)
VGE = 15V, V
400V, Tj 150°C
CC
Power dissipation TC = 25°C
Operating junction temperature
Storage temperature
I
jmax
I
V
CE
I
C
Cpuls
-
I
F
Fpuls
V
GE
t
SC
P
tot
T
j
T
stg
600 V
60
A
30
90
90
60
30
90
±20
5
V µs
187 W
-40...+175
-55...+175
°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
1
J-STD-020 and JESD-022
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
Page 2
IKW30N60T
TrenchStop
®
Series q
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
R
R
thJC
thJCD
0.80
K/W
1.05
junction – case
Thermal resistance,
thJA
40
R
junction – ambient
Electrical Characteristic, at T
Parameter Symbol Conditions
= 25 °C, unless otherwise specified
j
Value
Unit
min. typ. max.
Static Characteristic
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Diode forward voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
Gate-emitter leakage current
Transconductance
Integrated gate resistor
V
(BR)CESVGE
V
V
V
I
CES
I
GES
g
R
fs
VGE = 15V, IC=30A
CE(sat)
VGE=0V, IF=30A
F
IC=0.43mA,
GE(th)
VCE=600V,
VCE=0V,VGE=20V
VCE=20V, IC=30A
Gint
=0V, IC=0.2mA
T
=25°C
j
T
=175°C
j
T
=25°C
j
=175°C
T
j
V
CE=VGE
VGE=0V
=25°C
T
j
T
=175°C
j
600 - -
-
-
-
-
1.5
1.9
1.65
1.6
2.05
2.05
V
-
-
4.1 4.9 5.7
µA
-
-
-
-
40
1000
- - 100 nA
- 16.7 - S
-
Dynamic Characteristic
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge
Internal emitter inductance
C
iss
C
oss
C
rss
VCC=480V, IC=30A
Q
Gate
L
E
=25V,
V
CE
V
=0V,
GE
f=1MHz
- 1630 -
pF
- 108 -
- 50 -
- 167 - nC
V
=15V
GE
- 13 - nH
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
I
C(SC)
=15V,tSC≤5 µs
V
GE
= 400V,
V
CC
T
= 150°C
j
- 275 - A
Power Semiconductors
Page 3
IKW30N60T
TrenchStop
®
Series q
Switching Characteristic, Inductive Load, at T
Parameter Symbol Conditions
=25 °C
j
Value
min. Typ. max.
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
T
=25°C,
j
V
=400V,IC=30A,
CC
=0/15V,
V
GE
=10.6 Ω,
R
G
1)
L
=136nH,
σ
1)
C
=39pF
σ
Energy losses include “tail” and diode reverse recovery.
- 23 -
- 21 -
- 254 -
- 46 -
- 0.69 -
- 0.77 -
- 1.46 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse recovery current during t
b
t
Q
I
di
rr
rr
rrm
rr
/dt
T
=25°C,
j
=400V, IF=30A,
V
R
di
/dt=910A/µs
F
- 143 - ns
- 0.92 - µC
- 16.3 - A
- 603 -
Switching Characteristic, Inductive Load, at Tj=175 °C
Parameter Symbol Conditions
min. Typ. max.
IGBT Characteristic
t
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
T
=175°C,
j
V
=400V,IC=30A,
CC
V
=0/15V,
GE
= 10.6
R
G
1)
L
=136nH,
σ
1)
C
=39pF
σ
Energy losses include “tail” and diode reverse recovery.
- 24 -
- 26 -
- 292 -
- 90 -
- 1.0 -
- 1.1 -
- 2.1 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse recovery current during t
b
t
Q
I
di
rr
rr
rrm
rr
/dt
T
=175°C
j
V
=400V, IF=30A,
R
/dt=910A/µs
di
F
- 225 - ns
- 2.39 - µC
- 22.3 - A
- 310 -
Value
Unit
ns
mJ
A/µs
Unit
ns
mJ
A/µs
1)
Leakage inductance L
an d Stray capacity Cσ due to dynamic test circuit in Figure E.
σ
Power Semiconductors
Page 4
IKW30N60T
90A
80A
70A
60A
50A
40A
30A
, COLLECTOR CURRENT
C
20A
I
10A
0A
100Hz 1kHz 10kHz 100kHz
Figure 1. Collector current as a function of
TC=80°C
TC=110°C
I
c
I
c
f, SWITCHING FREQUENCY
switching frequency
(T
175°C, D = 0.5, VCE = 400V,
j
= 0/+15V, RG = 10Ω)
V
GE
TrenchStop
10A
1A
, COLLECTOR CURRENT
C
I
0.1A 1V 10V 100V 1000V
Figure 2. Safe operating area
®
Series q
tp=2µs
10µs
50µs
1ms
DC
10ms
VCE, COLLECTOR-EMITTER VOLTAGE
(D = 0, T V
GE
= 25°C, Tj 175°C;
C
=15V)
160W
120W
80W
, POWER DISSIPATION
tot
P
40W
0W
25°C 50°C 75°C 100°C 125°C 150°C
, CASE TEMPERATURE
T
C
Figure 3. Power dissipation as a function of
50A
40A
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
Figure 4. Collector current as a function of
case temperature
175°C)
(T
j
25°C 75°C 125°C
TC, CASE TEMPERATURE
case temperature
15V, Tj 175°C)
(V
GE
Power Semiconductors
Page 5
4
IKW30N60T
80A
70A
VGE=20V
60A
50A
40A
30A
, COLLECTOR CURRENT
20A
C
I
10A
0A
Figure 5. Typical output characteristic
15V
13V
11V
9V
7V
0V 1V 2V 3V
V
, COLLECTOR-EMITTER VOLTAGE
CE
(
T
= 25°C)
j
TrenchStop
50A
0A
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
Figure 6. Typical output characteristic
®
Series q
VGE=20V
15V
13V
11V
9V
7V
0V 1V 2V 3V
V
, COLLECTOR-EMITTER VOLTAGE
CE
(Tj = 175°C)
50A
40A
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
0V 2V 4V 6V 8V
TJ=175°C
25°C
V
, GATE-EMITTER VOLTAGE
GE
Figure 7. Typical transfer characteristic
=10V)
(V
CE
2.5V
2.0V
1.5V
1.0V
0.5V
COLLECTOR-EMITT SATURATION VOLTAGE
CE(sat),
0.0V
V
Figure 8. Typical collector-emitter
IC=60A
IC=30A
IC=15A
0°C 50°C 100°C 150°C
T
, JUNCTION TEMPERATURE
J
saturation voltage as a function of junction temperature
(
V
= 15V)
GE
Power Semiconductors
Page 6
IKW30N60T
100ns
t
d(on)
10ns
t, SWITCHING TIMES
t
r
1ns
0A 10A 20A 30A
I
Figure 9. Typical switching times as a
, COLLECTOR CURRENT
C
function of collector current
(inductive load,
V
= 400V, V
CE
T
=175°C,
J
= 0/15V, RG = 10,
GE
Dynamic test circuit in Figure E)
TrenchStop
t
d(off)
t
f
®
Series q
t
d(off)
t
f
100ns
t, SWITCHING TIMES
10ns
t
d(on)
t
r
10Ω 20Ω 30Ω 40Ω
R
, GATE RESISTOR
G
Figure 10. Typical switching times as a
function of gate resistor
(inductive load,
V
= 400V, V
CE
T
= 175°C,
J
= 0/15V, IC = 30A,
GE
Dynamic test circuit in Figure E)
7V
6V
t
d(off)
5V
100ns
t
f
4V
3V
t, SWITCHING TIMES
10ns
Figure 11. Typical switching times as a
t
d(on)
t
r
25°C 50°C 75°C 100°C 125°C 150°C
T
, JUNCTION TEMPERATURE
J
2V
GATE-EMITT TRSHOLD VOLTAGE
1V
GE(th),
V
0V
-50°C 0°C 50°C 100°C 150°C
Figure 12. Gate-emitter threshold voltage as
function of junction temperature
(inductive load, V
= 0/15V, IC = 30A, RG=10,
GE
V
CE
= 400V,
Dynamic test circuit in Figure E)
max.
typ .
min.
T
, JUNCTION TEMPERATURE
J
a function of junction temperature (
I
= 0.43mA)
C
Power Semiconductors
Page 7
IKW30N60T
5.0mJ
4.0mJ
3.0mJ
2.0mJ
1.0mJ
E, SWITCHING ENERGY LOSSES
0.0mJ
Figure 13. Typical switching energy losses
*) Eon and Ets include losses due to diode recovery
Eon*
0A 10A 20A 30A 40A 50A
I
, COLLECTOR CURRENT
C
as a function of collector current
(inductive load,
V
= 400V, V
CE
T
= 175°C,
J
= 0/15V, RG = 10,
GE
Dynamic test circuit in Figure E)
TrenchStop
Ets*
E
off
®
Series q
*) Eon and Ets include losses
due to diode recovery
3.0mJ
E
2.0mJ
1.0mJ
E, SWITCHING ENERGY LOSSES
Eon*
0.0mJ
0Ω 10Ω 20Ω 30Ω 40Ω
R
, GATE RESISTOR
G
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load,
V
= 400V, V
CE
Dynamic test circuit in Figure E)
T
= 175°C,
J
= 0/15V, IC = 30A,
GE
Ets*
off
2.0mJ
1.5mJ
1.0mJ
0.5mJ
E, SWITCHING ENERGY LOSSES
0.0mJ
Figure 15. Typical switching energy losses
*) Eon and Ets include losses due to diode recovery
E
off
Eon*
25°C 50°C 75°C 100°C 125°C 150°C
T
, JUNCTION TEMPERATURE
J
Ets*
3.0mJ
2.5mJ
2.0mJ
1.5mJ
1.0mJ
E, SWITCHING ENERGY LOSSES
0.5mJ
0.0mJ
Figure 16. Typical switching energy losses as a function of junction temperature
(inductive load,
= 0/15V, IC = 30A, RG = 10,
V
GE
V
CE
= 400V,
Dynamic test circuit in Figure E)
*) Eon and Ets include losses
due to diode recovery
Ets*
E
off
Eon*
300V 350V 400V 450V 500V 550V
V
, COLLECTOR-EMITTER VOLTAGE
CE
as a function of collector emitter voltage
(inductive load,
V
= 0/15V, IC = 30A, RG = 10,
GE
Dynamic test circuit in Figure E)
T
= 175°C,
J
Power Semiconductors
Page 8
C
(
)
IKW30N60T
15V
120V
10V
, GATE-EMITTER VOLTAGE
GE
5V
V
0V
0nC 30nC 60nC 90nC 120nC 150nC 180n
Q
Figure 17. Typical gate charge
(
I
, GATE CHARGE
GE
=30 A)
C
480V
TrenchStop
1nF
c, CAPACITANCE
100pF
Figure 18. Typical capacitance as a function
®
Series q
C
iss
C
oss
C
rss
0V 10V 20V 30V 40V
V
, COLLECTOR-EMITTER VOLTAGE
CE
of collector-emitter voltage
(
V
=0V, f = 1 MHz)
GE
12µs
400A
300A
200A
100A
, short circuit COLLECTOR CURRENT
sc C
I
0A
12V 14V 16V 18V
V
, GATE-EMITTETR VOLTAGE
GE
Figure 19. Typical short circuit collector
10µs
8µs
6µs
4µs
2µs
, SHORT CIRCUIT WITHSTAND TIME
SC
t
0µs
Figure 20. Short circuit withstand time as a current as a function of gate­emitter voltage
(
V
400V, Tj 150°C)
CE
10V 11V 12V 13V 14V
V
, GATE-EMITETR VOLTAGE
GE
function of gate-emitter voltage
(
V
=600V, start at T
CE
T
<150°C)
Jmax
=25°C,
J
Power Semiconductors
Page 9
τ
τ
/
6
τ
τ
/
IKW30N60T
D=0.5
0.2
-1
10
K/W
-2
10
K/W
, TRANSIENT THERMAL RESISTANCE
thJC
Z
Figure 21. IGBT transient thermal resistance
0.1
0.05
0.02
0.01
R ,(K/W)
0.29566 6.478*10-2
0.25779 6.12*10
0.19382 4.679*10-4
0.05279 6.45*10
R
1
C1=
1/R1
τ
C2=
single pulse
1µs10µs100µs 1ms 10ms 100ms
t
, PULSE WIDTH
P
(
D = tp / T)
TrenchStop
, (s)
-3
-5
R
2
R
2
2
®
Series q
0
10
K/W
D=0.5
0.2
R ,(K/W)
0.19517 1.079*10-1
0.26773 1.546*10
0.31252 2.297*10-3
0.22545 2.234*10-4
0.05
0.04916 7.5*10-6
R
1
10
-1
K/W
0.1
0.02
, TRANSIENT THERMAL RESISTANCE
thJC
Z
-2
10
K/W
100ns 1µs10µs100µs 1ms 10ms100ms
0.01
single pulse
t
, PULSE WIDTH
P
C1=
Figure 22. Diode transient thermal
impedance as a function of pulse width
(
D=t
/T)
P
1/R1
C2=
τ
, (s)
2
-2
R
2
R
2
250ns
200ns
150ns
100ns
, REVERSE RECOVERY TIME
rr
t
50ns
0ns
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
TJ=175°C
TJ=25°C
2.0µC
1.5µC
1.0µC
0.5µC
, REVERSE RECOVERY CHARGE
rr
Q
0.0µC
Figure 24. Typical reverse recovery charge a function of diode current slope
(
V
=400V, IF=30A,
R
Dynamic test circuit in Figure E)
TJ=175°C
TJ=25°C
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
as a function of diode current slope
(
V
= 400V, IF = 30A,
R
Dynamic test circuit in Figure E)
Power Semiconductors
Page 10
i
IKW30N60T
TJ=175°C
20A
15A
10A
5A
, REVERSE RECOVERY CURRENT
rr
I
0A
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current slope
(
V
= 400V, IF = 30A,
R
Dynamic test circuit in Figure E)
TJ=25°C
TrenchStop
-600A/µs
-450A/µs
-300A/µs
-150A/µs
/dt, DIODE PEAK RATE OF FALL
rr
d
OF REVERSE RECOVERY CURRENT
0A/µs
Figure 26. Typical diode peak rate of fall of
®
Series q
TJ=25°C
TJ=175°C
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
reverse recovery current as a function of diode current slope
(VR=400V, IF=30A, Dynamic test circuit in Figure E)
70A
60A
50A
40A
30A
, FORWARD CURRENT
F
I
20A
10A
0A
0V 1V 2V
Figure 27. Typical diode forward current as
TJ=25°C
175°C
V
, FORWARD VOLTAGE
F
2.0V
1.5V
1.0V
, FORWARD VOLTAGE
F
V
0.5V
0.0V
Figure 28. Typical diode forward voltage as a a function of forward voltage
IF=60A
30A
15A
0°C 50°C 100°C 150°C
T
, JUNCTION TEMPERATURE
J
function of junction temperature
Power Semiconductors
10 Rev. 2.3 Nov 06
Page 11
IKW30N60T
PG-TO247-3-21
TrenchStop
®
Series q
Power Semiconductors
11 Rev. 2.3 Nov 06
Page 12
τ
τ
τ
IKW30N60T
TrenchStop
®
Series q
i,v
+
di /dt
F
I
F
I
rrm
t=t t
rr S F
Q=Q Q
rr S F
t
rr
t
S
Q
Q
S
+
t
F
F
90% I
10% I
di /dt
rrm
rrm
rr
t
V
R
Figure C. Definition of diodes switching characteristics
p(t)
1
rrrr
1
T(t)
j
12 n
2 2
n
n
rr
Figure A. Definition of switching times
T
C
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Power Semiconductors
12 Rev. 2.3 Nov 06
Page 13
IKW30N60T
TrenchStop
®
Series q
Edition 2006-01
Published by Infineon Technologies AG 81726 München, Germany
© Infineon Technologies AG 11/20/06. All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
13 Rev. 2.3 Nov 06
Loading...