Datasheet IKW20N60T Specification

Page 1
IFAG IPC TD VLS
1
Features:
Very low V
CE(sat)
1.5V (typ.)
Maximum Junction Temperature 175°C  Short circuit withstand time 5s  Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TRENCHSTOPand Fieldstop technology for 600V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
- low V
CE(sat)
Positive temperature coefficient in V
CE(sat)
Low EMI  Low Gate Charge  Very soft, fast recovery anti-parallel Emitter Controlled HE diode  Qualified according to JEDEC1 for target applications  Pb-free lead plating; RoHS compliant
Type
VCE
IC
V
CE(sat),Tj=25°C
T
j,max
Marking
Package
IKW20N60T
600V
20A
1.5V
175C
K20T60
PG-TO247-3
Parameter
Symbol
Value
Unit
Collector-emitter voltage, T
j
25C
VCE
600
V
DC collector current, limited by T
jmax
TC = 25C
TC = 100C
IC
41 28
A
Pulsed collector current, tp limited by T
jmax
I
Cpu ls
60
Turn off safe operating area, V
CE
= 600V, Tj = 175C, tp = 1µs
-
60
Diode forward current, limited by T
jmax TC
= 25C
TC = 100C
IF
41 28
Diode pulsed current, tp limited by T
jmax
I
Fpu ls
60
Gate-emitter voltage
VGE
20
V
Short circuit withstand time2)
VGE = 15V, V
CC
400V, Tj 150C
tSC
5
s Power dissipation TC = 25C
P
tot
166
W
Operating junction temperature
Tj
-40...+175
C Storage temperature
T
stg
-55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
260
1 2
G
C
E
PG-TO247-3
IKW20N60T
TRENCHSTOP Series
Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Maximum Ratings
J-STD-020 and JESD-022
)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Page 2
IFAG IPC TD VLS
2
Parameter
Symbol
Conditions
Max. Value
Unit
IGBT thermal resistance, junction – case
R
thJ C
0.9
K/W
Diode thermal resistance, junction – case
R
thJ CD
1.5
Thermal resistance, junction – ambient
R
thJ A
40
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
Collector-emitter breakdown voltage
V
(BR )C ES
VGE=0V, IC=0.2mA
600 - -
V
Collector-emitter saturation voltage
V
CE( sa t)
VGE = 15V, IC=20A Tj=25C Tj=175C
-
-
1.5
1.9
2.05
-
Diode forward voltage
VF
VGE=0V, IF=20A Tj=25C Tj=175C
-
-
1.65
1.6
2.05
-
Gate-emitter threshold voltage
V
GE( th )
IC=290µA,VCE=VGE
4.1
4.9
5.7
Zero gate voltage collector current
I
CES
VCE=600V, VGE=0V
Tj=25C Tj=175C
-
-
-
-
40
1500
µA
Gate-emitter leakage current
I
GES
VCE=0V,VGE=20V
- - 100
nA
Transconductance
gfs
VCE=20V, IC=20A
-
11
-
S
Integrated gate resistor
R
Gin t
-
Ω
Input capacitance
C
iss
VCE=25V, VGE=0V, f=1MHz
-
1100
-
pF
Output capacitance
C
oss
-
71
-
Reverse transfer capacitance
C
rss
-
32
-
Gate charge
Q
Gat e
VCC=480V, IC=20A VGE=15V
-
120
-
nC
Internal emitter inductance measured 5mm (0.197 in.) from case
LE
PG-TO247-3
-
13
-
nH
Short circuit collector current1)
I
C(S C)
VGE=15V,tSC5s V
CC
= 400V,
Tj 150C
-
183.3
-
A
1
IKW20N60T
TRENCHSTOP Series
Thermal Resistance
Characteristic
Electrical Characteristic, at Tj = 25 C, unless otherwise specified
Static Characteristic
Dynamic Characteristic
)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Page 3
IFAG IPC TD VLS
3
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
Turn-on delay time
t
d(o n)
Tj=25C, VCC=400V,IC=20A, VGE=0/15V,rG=12, L=131nH,C=31pF
L, C from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
-
18
-
ns
Rise time
tr
-
14
-
Turn-off delay time
t
d(o ff )
-
199
-
Fall time
tf
-
42
-
Turn-on energy
Eon
-
0.31
-
mJ
Turn-off energy
E
off
-
0.46
-
Total switching energy
Ets
-
0.77
-
Diode reverse recovery time
trr
Tj=25C, VR=400V, IF=20A, diF/dt=880A/s
-
41
-
ns
Diode reverse recovery charge
Qrr
-
0.31
-
µC
Diode peak reverse recovery current
I
rrm
-
13.3
-
A
Diode peak rate of fall of reverse recovery current during tb
dirr/dt
-
711
-
A/s
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
Turn-on delay time
t
d(o n)
Tj=175C, VCC=400V,IC=20A, VGE=0/15V,rG=12, L=131nH,C=31pF
L, C from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
-
18
-
ns
Rise time
tr
-
18
-
Turn-off delay time
t
d(o ff )
-
223
-
Fall time
tf
-
76
-
Turn-on energy
Eon
-
0.51
-
mJ
Turn-off energy
E
off
-
0.64
-
Total switching energy
Ets
-
1.15
-
Diode reverse recovery time
trr
Tj=175C VR=400V, IF=20A, diF/dt=880A/s
-
176
-
ns
Diode reverse recovery charge
Qrr
-
1.46
-
µC
Diode peak reverse recovery current
I
rrm
-
18.9
-
A
Diode peak rate of fall of reverse recovery current during tb
dirr/dt
-
467
-
A/s
IKW20N60T
TRENCHSTOP Series
Switching Characteristic, Inductive Load, at Tj=25 C
IGBT Characteristic
Anti-Parallel Diode Characteristic
Switching Characteristic, Inductive Load, at Tj=175 C
IGBT Characteristic
Anti-Parallel Diode Characteristic
Page 4
IFAG IPC TD VLS
4
I
C
, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
10A
20A
30A
40A
50A
60A
TC=110°C
TC=80°C
I
C
, COLLECTOR CURRENT
1V 10V 100V 1000V
0.1A
1A
10A
10µs
1ms
DC
tp=2µs
50µs
10ms
f, SWITCHING FREQUENCY
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 175C, D = 0.5, VCE = 400V, VGE = 0/15V, rG = 12)
Figure 2. Safe operating area
(D = 0, TC = 25C, Tj 175C; VGE=0/15V)
P
tot
, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
20W
40W
60W
80W
100W
120W
140W
160W
I
C
, COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C 150°C
0A
10A
20A
30A
40A
TC, CASE TEMPERATURE
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature (Tj 175C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 175C)
I
c
I
c
IKW20N60T
TRENCHSTOP Series
Page 5
IFAG IPC TD VLS
5
I
C
, COLLECTOR CURRENT
0V 1V 2V 3V
0A
10A
20A
30A
40A
50A
15V
7V
9V
11V
13V
VGE=20V
I
C
, COLLECTOR CURRENT
0V 1V 2V 3V 4V
0A
10A
20A
30A
40A
50A
15V 13V
7V
9V
11V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 175°C)
I
C
, COLLECTOR CURRENT
0V 2V 4V 6V 8V
0A
5A
10A
15A
20A
25A
30A
35A
25°C
TJ=175°C
V
CE(sat),
COLLECTOR-EMITT SATURATION VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
2.5V
IC=20A
IC=40A
IC=10A
V
GE
, GATE-EMITTER VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction temperature
(VGE = 15V)
IKW20N60T
TRENCHSTOP Series
Page 6
IFAG IPC TD VLS
6
t, SWITCHING TIMES
0A 5A 10A 15A 20A 25A 30A 35A
1ns
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
t, SWITCHING TIMES
      
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C, V
CE
= 400V, V
GE
= 0/15V, rG = 12Ω,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C, VCE= 400V, V
GE
= 0/15V, IC = 20A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
V
GE(th),
GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ.
max.
TJ, JUNCTION TEMPERATURE
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, V
CE
= 400V,
V
GE
= 0/15V, IC = 20A, rG=12Ω,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.29mA)
IKW20N60T
TRENCHSTOP Series
Page 7
IFAG IPC TD VLS
7
E, SWITCHING ENERGY LOSSES
0A 5A 10A 15A 20A 25A 30A 35A
0.0mJ
0.4mJ
0.8mJ
1.2mJ
1.6mJ
2.0mJ
2.4mJ
Ets*
E
off
*) Eon and Ets include losses due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
    
0.0mJ
0.4mJ
0.8mJ
1.2mJ
1.6mJ
2.0mJ
2.4mJ
Ets*
E
off
*) Eon and Ets include losses due to diode recovery
Eon*
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C, V
CE
= 400V, V
GE
= 0/15V, rG = 12Ω,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C, V
CE
= 400V, V
GE
= 0/15V, IC = 20A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C 150°C
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
1.0mJ
Ets*
E
off
*) Eon and Ets include losses due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
300V 350V 400V 450V 500V 550V
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
1.0mJ
1.2mJ
1.4mJ
1.6mJ
1.8mJ
2.0mJ
Ets*
Eon*
*) Eon and Ets include losses due to diode recovery
E
off
TJ, JUNCTION TEMPERATURE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, V
CE
= 400V,
V
GE
= 0/15V, IC = 20A, rG = 12Ω,
Dynamic test circuit in Figure E)
Figure 16. Typical switching energy losses
as a function of collector emitter voltage
(inductive load, TJ = 175°C, V
GE
= 0/15V, IC = 20A, rG = 12Ω,
Dynamic test circuit in Figure E)
IKW20N60T
TRENCHSTOP Series
Page 8
IFAG IPC TD VLS
8
V
GE
, GATE-EMITTER VOLTAGE
0nC 30nC 60nC 90nC 120nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V 30V 40V
10pF
100pF
1nF
C
rss
C
oss
C
iss
QGE, GATE CHARGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=20 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
I
C(sc)
, short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
50A
100A
150A
200A
250A
300A
t
SC
, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
2µs
4µs
6µs
8µs
10µs
12µs
VGE, GATE-EMITTETR VOLTAGE
VGE, GATE-EMITETR VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gate­emitter voltage
(VCE 400V, Tj 150C)
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=400V, start at TJ=25°C, T
Jmax
<150°C)
IKW20N60T
TRENCHSTOP Series
Page 9
IFAG IPC TD VLS
9
Z
thJC
, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
Z
thJC
, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP, PULSE WIDTH
tP, PULSE WIDTH
Figure 21. IGBT transient thermal
impedance
(D = tp / T)
Figure 22. Diode transient thermal
impedance as a function of pulse width
(D=tP/T)
t
rr
, REVERSE RECOVERY TIME
600A/µs 900A/µs 1200A/µs
0ns
50ns
100ns
150ns
200ns
250ns
TJ=25°C
TJ=175°C
Q
rr
, REVERSE RECOVERY CHARGE
600A/µs 900A/µs 1200A/µs
0.2µC
0.4µC
0.6µC
0.8µC
1.0µC
1.2µC
1.4µC
1.6µC
1.8µC
TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=400V, IF=20A, Dynamic test circuit in Figure E)
Figure 24. Typical reverse recovery charge
as a function of diode current slope
(VR = 400V, IF = 20A, Dynamic test circuit in Figure E)
R,(K/W )
, (s)
0.18715
6.925*10-2
0.31990
1.085*10
-2
0.30709
6.791*10-4
0.07041
9.59*10-5
C1=
1/R1
R1R
2
C2=
2/R2
R,(K/ W )
, (s)
0.13483
9.207*10-2
6.53*10-2
0.58146
1.821*10
-2
0.44456
1.47*10-3
0.33997
1.254*10-4
C1=
1/R1
R1R
2
C2=
2/R2
IKW20N60T
TRENCHSTOP Series
Page 10
IFAG IPC TD VLS
10
I
rr
, REVERSE RECOVERY CURRENT
600A/µs 900A/µs 1200A/µs
0A
4A
8A
12A
16A
20A
24A
TJ=25°C
TJ=175°C
di
rr
/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
600A/µs 900A/µs 1200A/µs
0A/µs
-150A/µs
-300A/µs
-450A/µs
-600A/µs
-750A/µs
TJ=25°C
TJ=175°C
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current slope
(VR = 400V, IF = 20A, Dynamic test circuit in Figure E)
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a function of diode current slope
(VR=400V, IF=20A, Dynamic test circuit in Figure E)
I
F
, FORWARD CURRENT
0V 1V 2V
0A
10A
20A
30A
40A
50A
175°C
TJ=25°C
V
F
, FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
20A
IF=40A
10A
VF, FORWARD VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 27. Typical diode forward current as
a function of forward voltage
Figure 28. Typical diode forward voltage as a
function of junction temperature
IKW20N60T
TRENCHSTOP Series
Page 11
IFAG IPC TD VLS
11
IKW20N60T
TRENCHSTOP Series
Page 12
IFAG IPC TD VLS
12
I
r r m
90% I
r r m
10% I
r r m
di /dt
F
t
r r
I
F
i,v
t
Q
S
Q
F
t
S
t
F
V
R
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes switching characteristics
p(t)
1 2 n
T (t)
j
1
1
2 2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
IKW20N60T
TRENCHSTOP Series
Page 13
IFAG IPC TD VLS
13
IKW20N60T
TRENCHSTOP Series
Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Loading...