Datasheet HA12209F Datasheet (HIT)

Page 1
HA12209F
Audio Signal Processor for Cassette Deck
(Dolby B-type NR with Recording System)
ADE-207-221A (Z)
2nd Edition
Jun. 1999
Description
HA12209F is silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor system, REC equalizer system and each electronic control switch in one chip.
Functions
Dolby B-NR × 2 channel
REC equalizer × 2 channel
Music sensor × 1 channel
Each electronic control switch to change REC equalizer, bias, etc.
Features
REC equalizer is very small number of external parts and have 4 types of frequency characteristics
built-in.
2 types of input for PB, 1 type of input for REC.
70µ-PB equalizer changing system built-in.
Dolby NR with dubbing double cassette decks.
Unprocessed signal output available from recording out terminals during PB mode.
Provide stable music sensor system, available to design music sensing time and level.
Controllable from direct micro-computer output.
Bias oscillator control switch built-in.
NR ON/OFF and REC/PB fully electronic control switching built-in.
Normal-speed/high-speed, TYPE I/TYPE II and PB equalizer fully electron ic control switching built-in.
Available to reduce substrate-area because of high integration and small external parts.
* Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
Page 2
HA12209F
Ordering Information

Standard Level

Operating Voltage
Product Package PB-OUT Level REC-OUT Level Dolby Level Min Max
HA12209F FP-56 580mVrms 300mVrms 300mVrms 10V 15V
Function
Product Dolby B-NR REC-EQ Music Sensor REC/PB Selection
HA12209F ❍❍❍❍ Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the
REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment of built-in resistor is necessary.
Rev.2, Jun. 1999, page 2 of 49
Page 3
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.)
Pin No. Pin Name Note Equivalent Circuit Pin Description
52 AIN (R) V = V
/ 2
CC
V
100k
VCC/2
48 AIN (L) 54 BIN (R) PB B deck input 45 BIN (L) 56 RIN (R) REC input 44 RIN (L) 6 EQIN (R) REC equalizer
37 EQIN (L) 4 DET (R) V = 2.6V
V
CC
PB A deck input
input
Time constant pin for Dolby-NR
V
GND
39 DET (L) 49 RIP V = VCC / 2 Ripple filter 1 BIAS1 V = 0.6V
Dolby bias current input
V
42 BIAS2 V = 1.3V
GND
REC equalizer bias current input
V
GND
Rev.2, Jun. 1999, page 3 of 49
Page 4
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No. Pin Name Note Equivalent Circuit Pin Description
3 PBOUT (R) V = V
/ 2
CC
V
40 PBOUT (L) 5 RECOUT (R) REC output 38 RECOUT (L) 8 EQOUT (R) Equalizer output 35 EQOUT (L) 32 MAOUT MS amp. input * 53 ABO (R) V = VCC / 2
V
CC
GND
PB output
V
CC
Time constant pin for PB equalizer
1
46 ABO (L) 25 BIAS (C) V = VCC –
0.7
26 BIAS (N) Note: 1. MS : Music Sensor
V
12k15k
GND
V
CC
REC bias current output
V
Rev.2, Jun. 1999, page 4 of 49
Page 5
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No. Pin Name Note Equivalent Circuit Pin Description
29 MSDET I = 0µA
31 MSIN V = VCC / 2
V
I
V
V
V
100k
CC
GND
CC
VCC/2
Time constant pin for MS *
1
MS input
33 MAI V = VCC / 2
27 MSOUT I = 0µA
Note: 1. MS : Music Sensor
MAOUT
V
CC
100k
V
45k
VCC/2
V
CC
V
I
DGND
MS amp. output
MS output (to MPU)
Rev.2, Jun. 1999, page 5 of 49
Page 6
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No. Pin Name Note Equivalent Circuit Pin Description
10 PB A/B I = 20µA
V
22k
100k
I
GND
11 A 120/70 12 NORM/HIGH 14 B 120/70 16 BIAS
ON/OFF 17 RM ON/OFF 19 NR ON/OFF 20 REC/PB 21 LM ON/OFF 22, 23 V
CC
V = V
CC
50, 51 GND V = 0V GND pin 2, 7, 9, 13,
NC No connection 15, 18, 24, 28, 30, 34, 36, 41, 43, 47, 55
Mode control input
Power supply
Rev.2, Jun. 1999, page 6 of 49
Page 7
Block Diagram
MAOUT
MAI
NC
EQOUT (L)
NC
EQIN (L)
RECOUT (L)
DET (L)
PBOUT (L)
NC
BIAS2
+
42
41 40 39 38 37 36 35 34 33 32 31 30 29
+
++
MSIN
NC
HA12209F
MSDET
+
NC
RIN (L)
BIN (L)
ABO (L)
NC
AIN (L)
RIP
AIN (R)
ABO (R)
BIN (R)
NC
RIN (R)
43
44
45
15k
46
47
48
49
+
50
51
52
53
54
55
56
12k
12k
15k
1 2 3 4 5 6 7 8 9 10 11 12 13 14
DOLBY
B-NR
DOLBY
B-NR
EQ
+
EQ
+ + +
LPF
45k
100k
MS DET
+
BIAS
SW
28
27
26
25
24
23
22
21
20
19
18
17
16
15
NC
MSOUT
BIAS (N)
BIAS (C)
NC
V
CC
LM ON/
REC/
NR ON/
NC
RM /OFF
BIAS ON/
NC
BIASOUT
BIAS1
NC
DET (R)
PBOUT (R)
EQIN (R)
RECOUT (R)
NC
NC
EQOUT (R)
/B PB
/70
A
/HIGH
B
/70
NC
Rev.2, Jun. 1999, page 7 of 49
Page 8
HA12209F

Functional Description

Power Supply Range

HA12209F is designed to operate on single supply.
Table 1 Spply Voltage
Item Power Supply Range
Single Supply 10V to 15V Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12dB by Dolby Laboratories.

Reference Voltage

For this IC, the reference voltage (V
/2) occurrence device is built-in as AC grand. A capacitor for a
CC
ripple filter is greatly small characteristic with 1/1 00 co mpar ed with co nventional device.
And, the reference voltage are provided for the left channel and the right channel separately.
The block diagram is shown as figure 1.
V
22 23
V
CC
50 51 49
GND PIR
CC
+
+
+
+
1µ
L channel Reference voltage
Music sensor Reference voltage
R channel Reference voltage
Unit
C : F
Figure 1 Reference Voltage
Rev.2, Jun. 1999, page 8 of 49
Page 9
HA12209F

Operating Mode Control

HA12209F provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage).
Table 2 Control Voltage
Pin No. Lo Hi Unit Test Condition
10, 11, 12, 14, 16,
–0.2 to 1.0 4.0 to 5.3 V
17, 19, 20, 21
Note: 1. Each pins are on pulled down with 100k internal resistor. Therefore, it will be low-level when
each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized. (High: 5.3V, Low: –0.2V)
3. For reduction of pop noise, connect 1µF to 22µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time.

Input Block Diagram and Lev e l Diagram

Input Pin Measure
MS REF
5.7dB
REC
300mVrms
12k
FLAT
(120µ)
70µs
15k
CEX1
0dB
PB
REC
PB/REC=0dB/17dB
42.4mVrmsABO
RIN
AIN
BIN
Note: The each level shown above is typical value when offering PBOUT level to PBOUT pin.
25.9mVrms
21.3dB
300mVrms
PB
300mVrms
DOLBY
B-NR
Figure 2 Input Block Diagram
PBOUT 580mVrms
RECOUT 300mVrms
Unit
R : C : F
Rev.2, Jun. 1999, page 9 of 49
Page 10
HA12209F

PB Equalizer

By switching logical input level of 11 pin (for Ain) and 14 pin (for Bin), you can equalize corresponding to tape position at play back mode.
With the capacity CEX1 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are decided.
Gv
t1 = CEX1 · (12k + 15k) t2 = CEX1 · 15k
(t1) (t2)
Figure 3 Frequency Characteristic of PB Equalizer

The sensitivity Adjustment of Music Sensor

Adjusting MS amp. gain by external resistor, the sensitivity of music sensor can set up.
f
PB(L)
–6dB
PB(R)
REP
45k
LPF
25kHz
MAI
100k
+
MS AMP
C26
0.01µ
MA OUT
R12
330k
MSIN
100k
Figure 4 Music Sensor Block Diagram
V
CC
DET
MS DET
+
C10
0.33µ
MS OUT
GND
DV
CC
R
L
Microcomputer
GND
Unit
R : C : F
Rev.2, Jun. 1999, page 10 of 49
Page 11

The sensitivity of Music Senso r

Gv
HA12209F
f1 = f2 = 25k [Hz]
f
f1 f2
1
2π · C26 · 100k
[Hz]
Figure 5 Frequency Characteristic of MSIN
Occasion of the external component of figure 4, f1 is 159Hz. A standard level of MS input pin
25.9mVrms, therefore, the sensitivity of music sensor (S) can request it, b y lower formulas.
A = MS Amp Gain B = PB input Gain × (1/2)* C = Sensed voltage
20log (A × B) = D [dB] PB input Gain = 21.3 [dB]
1
S = 20log
S = 14 – D [dB]
C
25.9 · A · B
[dB]
Note: 1. Case of one-sided channel input.

Time Constant of Detection

Figure 6(1) generally shows that detection time is in proportion to value of capacitor C10. But, with Attack*
2
and Recovery*3 the detection time differs exceptionally.
Recovery
Attack
Detection time
C10
Function Characteristic of MS (1) Function Characteristic of MS (2) Function Characteristic of MS (3)
Recovery Recovery
Attack Attack
Detection time
R12
Detection level
Detection time
Input level
Figure 6 Function Characteristics of MS
Like the figure 6(2), Recovery time is variably possible by value of resistor R12. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency.
Note: 2. Attack : Non-music Music
3. Recovery : Music Non-music
Rev.2, Jun. 1999, page 11 of 49
Page 12
HA12209F

Music Sensor Output (MSOUT)

As for internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And ou tput lev el will be “low” when sensing signal.
Connection with microcomputer, it is requested to use external pull up resistor (R
Note: Supply voltage of MSOUT pin must be less than V
voltage.
CC
= 10k to 22kΩ)
L

The Tolerances of External Components

For Dolby NR precision securing, please use external components shown at figure 7.
If leak-current are a few electrolytic-capacitor, it can be applicable to C2 and C15.
C15
0.1µ ±10%
39
DET (L)
HA12209
BIAS1
R1
33k
±2%
DET (R)
1 4
C2
0.1µ ±10%
Unit
R : C : F
Figure 7 Tolerance of External Components

Low-Boost

+
CEX2
2.2µ
Vin
Rev.2, Jun. 1999, page 12 of 49
EQIN
REX1
20k
REX2
6.8k
GND
REX3
5.1k
+
CEX3
0.47µ
+
CEX4
0.47µ
REC EQ
Figure 8 Example of Low Boost Circuit
EQOUT
Unit
R : C : F
Page 13
HA12209F
External components shown figure 8 gives frequency response to take 6dB boost. And cut off frequency can request it, by lower formulas.
Gv
1
1
REX1 · REX2
R0 = []
REX1 + REX2
f1 f2
f1 = [Hz]
2π · CEX3 · (REX3 + R0)
f2 = [Hz]
2π · CEX3 · REX3
f
Figure 9 Frequency Characteristic of Low-Boost

Bias Switch

This series built-in DC voltage gene rator for bias oscillator and its bias switches.
External resistor R8, R10 which corresponded with tape positions and bias out voltage are relater with below.
Vbias = × (VCC – 0.7) [V]
R9
(R10 or R8) + R9
Bias switch follows to a logic of 14 pin (B 120/70).
Note: A current that flows at bias out pin, please use it less than 5mA.
BIAS (N)
BIAS (C)
26
25
R10
R8
Vbias
R9
GND
Figure 10 External Components of Bias Block
Rev.2, Jun. 1999, page 13 of 49
Page 14
HA12209F
Absolute Maximum Rating (Ta=25°C)
Item Symbol Rating Unit Note
Max supply voltage V Power dissipation P Operating temperature Topr –40 to +75 °C Storage temperature Tstg –55 to +125 °C
max 16 V
CC
T
500 mW Ta 75°C
Rev.2, Jun. 1999, page 14 of 49
Page 15
HA12209F
Electrical Characteristics (Ta = 25°C, VCC = 12V, Dolby Level = REC-OUT Level =
300mVrms = 0dB)
2
Other
No signal
RECOUT
level (dB)
——
fin
(Hz)
MUTE
120µ/
120 ON
70µ
–20
0
0
1k1k2k
OFF
OFF
OFF
120
120
120
–30
2k5k5k
OFF
120
THD=1%*
Rg=5.1k, CCIR/ARM
——0
20
30
1k1k1k1k1k1k1k
OFF
OFF
120
120
OFF
120
OFF
120
OFF
120
+12
OFF
120
+12
OFF
120
+1200——
+12
+12
1k1k10k5k—
ON
OFF
OFF
1207070
120
120
OFF
OFF
OFF
120
OFF
120
OFF
120
1
IC Condition*
A/B
A
A/BAA
REC/PB
NR
PB
PB
ON/OFF
OFF
OFFQuiescent current
mAdBdB
30.0
28.5
23.0
27.0
15.0
25.5
PB
Q
I
G
V
REC
REC
OFF
ON
dB
24.2
5.8
22.7
4.3
21.2
2.8
REC
V
G
ENC 2k (1)
AAA
REC
REC
REC
ON
ON
ON
dBdBdB
10.0
4.7
9.7
8.5
3.2
8.2
7.0
1.7
6.7
ENC 2k (2)
ENC 5k (1)
ENC 5k (2)
AAA
REC
ONONON
dBdB%dBdB
REC
RECPBREC
A/BAA/B
PB
OFF
OFF
OFF
dB
——0.3————
13.0
70.0
0.05
80.0
85.0
70.0
12.0
64.0Ñ70.0
Vo max
S/N
T.H.D.
CTRL (1)
75.0
60.0
CTRL (2)
CT A/B
A
A/B
A/B
REC/PB
OFF
dB
80.0
70.0
CT R/P
A/BAA
PBPBPBPBPB
OFF
OFF
OFF
dBdBdBdBV
27.0
23.8
80.0
25.5
22.3
70.0
24.0
20.8
EQ 1k
EQ 10k
V
V
G
MUTE
G
OFF
7.4
11.4
15.4
ONVOL
V
3
OFF
1.5
1.0
A
PB
OFF
2.0 µA
OH
I
V
1.0
0.2
ILVIH
V
V
5.3
4.0
=10V
CC
3. For inputting signal to one side channel
2. V
Item Symbol Min Typ Max Unit Test Condition
B type
Input AMP. gain
Encode boost
Signal handling
Signal to noise ratio
Total harmonic distortion
Channel separation
Crosstalk
Mute attenuation
MS sensing level*
70µ EQ gain
MS output low level
MS output leak current
Note: 1. Other IC condition : REC-MUTE OFF, TYPE I, Normal speed, Bias OFF
Control voltage
Rev.2, Jun. 1999, page 15 of 49
Page 16
HA12209F
Electrical Characteristics (Ta=25°C, VCC = 12V, Dolby Level = REC-OUT Level =
300mVrms = 0dB) (cont)
Rg=5.1k, A-WTG Filter
f=1kHz, THD=1%, Vin=–26dBs=0dB
NORM
NORM
SPEED
TAPE
TYPE I
TYPE I
dBdB%
——0.5
58
12.5
55
10.5—–500
S/N (EQ)
Vin max (EQ)
f=1kHz, Vin=–26dBs
No signal
f=1kHz, Vin=–46dBs
NORM
NORM
NORM
TYPE I
TYPE I
TYPE I
mV
dBdBdB
500
21.5
0.2
0
20.0
18.5
T.H.D. (EQ)
VEQ-1N1GVEQ-1N2GVEQ-1N3
Vofs (EQ)
G
f=12.5kHz, Vin=–46dBs
f=2kHz, Vin=–46dBs
f=5kHz, Vin=–46dBs
23.4
21.4
19.4
f=5kHz, Vin=–46dBs
f=12.5kHz, Vin=–46dBs
f=1kHz, Vin=–46dBs
NORM
TYPE II
dBdBdBdBdB
24.4
35.1
22.9
32.1
21.4
29.1
VEQ-2N1GVEQ-2N2GVEQ-2N3GVEQ-1H1GVEQ-1H2GVEQ-1H3GVEQ-2H1
G
27.3
25.3
23.3
38.0
35.0
32.0
HIGH
TYPE I
20.7
19.2
17.7
f=10kHz, Vin=–46dBs
f=25kHz, Vin=–46dBs
dB
23.8
37.0
21.8
34.0
19.8
31.0
f=2kHz, Vin=–46dBs
f=10kHz, Vin=–46dBs
HIGH
TYPE II
dB
dBdBdB
23.5
28.3
22.0
26.3
24.3
20.5
VEQ-2H2GVEQ-2H3
G
f=25kHz, Vin=–46dBs
f=1kHz, Vin=–14dBs
NORM
TYPE I
41.7——
38.770V
35.760V
REC-MUTE
RL=2.4k+270
V
CC
–1.0
CC
–1.4
Bias on
RL=2.4k+270
mV
100
0
–100
Bias off
Item Symbol Min Typ Max Unit Test Condition
Equalizer S/N
Equalizer maximum input
Equalizer Total Harmonic
Distortion
Equalizer offset voltage
Equalizer
frequency responce
(TYPE I-NORM)
Rev.2, Jun. 1999, page 16 of 49
Equalizer
frequency responce
(TYPE II-NORM)
Equalizer
frequency responce
(TYPE I-HIGH)
Equalizer
REC MUTE attenuation
frequency responce
(TYPE II-HIGH)
Bias out Max level
Bias out offset
Page 17

Test Circuit

HA12209F
1
CC
V
+
C9
100µ
2
CC
V
5V
R :
C : F
EQ
OUT (L)
REC
OUT (L)
PB
OUT (L)
C13
R14
0.47µ
R16
5.1k
6.8k
5.1k
Unit
10k
EQ
OUT (R)
R6
5.1k
+
C4
0.47µ
R4
6.8k
REC
OUT (R)
PB
OUT (R)
33k
++
19
B-NR
C8
12k
22µC722µ
18
15k
SW6
RM /OFF
17
SW5
22k
R27
BIAS ON/
SW4
SW3
SW2
SW1
/HIGH
/70
EQ
A
PB /B
R7
C6
2.2µ
+
(R)
EQIN
JP2
C5
0.47µ R5
B /70
16
15
++ +
R3
C3
20k
2.2µ
C2
0.1µ
C1
2.2µ R2
10k
1 2 3 4 5 6 7 8 9 10 11 12 13 14
R1
SW9
SW8
LM ON/
21
REC/
20
SW7
22k
R26
NR ON/
DOLBY
MSOUT
R11
3.9k R9
2.4k
BIASOUT
2k
R8
910
R10
CC
24
DOLBY
12k
B-NR
V
23
22
LPF
+
BIAS (C)
BIAS (N)
28
27
26
+
BIAS
15k
25
SW
45k
C10
0.33µ
+
R12
330k
C26
0.01µ
MS DET
100k
R13
10k
C11
2.2µ
++
(L)
EQIN
JP1
C12
R15
5.1k
+
20k
R17
C14
C15
C16
10k
R18 R19
22k
EQ
0.47µ
37 36 35 34 33 32 31 30 29
+
38
2.2µ
0.1µ
+
2.2µ
41 40 39
42
43
44
+ +
C17
0.47µ
R20
5.1k
RIN (L)
45
C18
R21
BIN (L)
46
47
48
+
C19
0.47µ
0.0047µ
10k
C20
R22
AIN (L)
50
51
52
53
54
55
C24
56
+
0.47µ
10k
C25
R25
RIN (R)
0.47µ
5.1k
49
+
1µ
C21
0.47µ
10k
C22
R23
AIN (R)
++
+
C23
0.47µ
0.0047µ
10k
R24
BIN (R)
Rev.2, Jun. 1999, page 17 of 49
Page 18
HA12209F

Parallel Data Format

Pin No. Pin Name Lo Hi Mode “Pin Open”
10 PB A/B Ain* 11 A 120/70 *
1
1
12 NORM/HIGH Normal speed High speed Lo 14 B 120/70 REC EQ TYPE I*
1
Bias TYPE I 16 BIAS ON/OFF BIAS OFF BIAS OFF Lo 17 RM ON/OFF REC MUTE ON REC MUTE OFF Lo 19 NR ON/OFF NR OFF NR ON Lo 20 REC/PB PB MODE REC MODE Lo 21 LM ON/OFF LINE MUTE OFF LINE MUTE ON Lo Note: 1. PB EQ LOGIC
PB AAAA/B A 120
120/70 B 120
120120
120/70 Lo Hi
120120
Lo Lo FLAT FLAT Lo Hi FLAT 70µ Hi Lo 70µ FLAT Hi Hi 70µ 70µ
1
Bin*
1
*
REC EQ TYPE II* Bias TYPE II
Lo Lo
1
Lo
Rev.2, Jun. 1999, page 18 of 49
Page 19
Characteristics Curve
25
20
15
Quiescent Current (mA)Quiescent Current (mA)
10
Quiescent Current vs. Supply Voltage (1)
RECmode
No Signal
NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF
Other SW is Low
8
10 12 14
Supply Voltage (V)
HA12209F
16
25
PBmode
20
15
No Signal
Other SW is Low
10
8
Quiescent Current vs. Supply Voltage (2)
NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 19 of 49
Page 20
HA12209F
30
20
Input Amp. Gain (dB)Input Amp. Gain (dB)
VCC=12V PBmode NR-OFF AINPBOUT
10
10
Input Amp. Gain vs. Frequency (1)
A µ
A 70µ
100 1k 10k 100k
Frequency (Hz)
1M
30
20
VCC=12V PBmode NR-OFF AINRECOUT
10
10
Input Amp. Gain vs. Frequency (2)
100 1k 10k 100k
Frequency (Hz)
1M
Rev.2, Jun. 1999, page 20 of 49
Page 21
30
20
Input Amp. Gain (dB)
VCC = 12V RECmode NR-OFF RIN PBOUT, RECOUT
10
10
Input Amp. Gain vs. Frequency (3)
PBOUT
RECOUT
100 1k 10k 100k
Frequency (Hz)
HA12209F
1M
Rev.2, Jun. 1999, page 21 of 49
Page 22
HA12209F
12
Encode Boost (dB)
8
4
0
100
Encode Boost vs. Frequency
VCC = 12V
Vin = –40dB
30dB
20dB
10dB
0dB
1k 20k10k
Frequency (Hz)
0
2
4
6
Decode Cut (dB)
8
10
VCC=12V
–12
100
Decode Cut vs. Frequency
Vin = 0dB
10dB
20dB
30dB
40dB
1k 20k10k
Frequency (Hz)
Rev.2, Jun. 1999, page 22 of 49
Page 23
Maximum Output Level vs. Supply Voltage (1)
25
20
15
Maximum Output Level Vomax (dB)
10
8
NR-OFF NR-ON
PBmode Ain PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF
10 12 14
Supply Voltage (V)
HA12209F
16
Maximum Output Level vs. Supply Voltage (2)
25
20
15
Maximum Output Level Vomax (dB)
10
8
NR-OFF NR-ON
PBmode Ain RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 23 of 49
Page 24
HA12209F
Maximum Output Level vs. Supply Voltage (3)
25
20
15
Maximum Output Level Vomax (dB)
10
8
25
20
NR-OFF NR-ON
RECmode Rin RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF
10 12 14
Supply Voltage (V)
Maximum Output Level vs. Supply Voltage (4)
NR-OFF NR-ON
RECmode Rin PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF
16
15
Maximum Output Level Vomax (dB)
10
8
Rev.2, Jun. 1999, page 24 of 49
10 12 14
Supply Voltage (V)
16
Page 25
85
80
75
HA12209F
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio S/N (dB)
70
8
85
80
75
NR-OFF NR-ON
PBmode Ain PBOUT CCIR/ARM 0dB = 580mVrms (PBOUT)
10 12 14
Supply Voltage (V)
Signal to Noise Ratio vs. Supply Voltage (2)
NR-OFF NR-ON
RECmode Rin RECOUT CCIR/ARM 0dB = 300mVrms (RECOUT)
16
Signal to Noise Ratio S/N (dB)
70
8
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 25 of 49
Page 26
HA12209F
Total Harmonic Distortion vs. Supply Voltage (1)
1.0
0.1
Total Harmonic Distortion T.H.D (%)
0.01 8
100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF)
PBmode NR-OFF Ain PBOUT Vin = 0dB
10 12 14
Supply Voltage (V)
16
Total Harmonic Distortion vs. Supply Voltage (2)
1.0
0.1
Total Harmonic Distortion T.H.D (%)
0.01 8
100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF)
PBmode NR-ON Ain PBOUT Vin = 0dB
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 26 of 49
Page 27
Total Harmonic Distortion vs. Supply Voltage (3)
1.0
0.1
Total Harmonic Distortion T.H.D (%)
0.01 8
100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF)
RECmode NR-OFF Rin RECOUT Vin = 0dB
10 12 14
Supply Voltage (V)
HA12209F
16
Total Harmonic Distortion vs. Supply Voltage (4)
1.0
0.1
Total Harmonic Distortion T.H.D (%)
0.01 8
100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF)
RECmode NR-ON Rin RECOUT Vin = 0dB
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 27 of 49
Page 28
HA12209F
10
0.1
Total Harmonic Distortion T.H.D (%)
0.01
Total Harmonic Distortion vs. Output Level (1)
100Hz 1kHz
10kHz VCC = 12V, PBmode NR-OFF, AIN PBOUT 0dB = 580mVrms (at PBOUT)
1
25
20 15 10 50 51015
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (2)
10
100Hz
1kHz
10kHz VCC = 12V, PBmode NR-ON, AIN PBOUT 0dB = 580mVrms (at PBOUT)
1
0.1
Total Harmonic Distortion T.H.D (%)
0.01
25
20 15 10 50 51015
Output Level Vout (dB)
20
Rev.2, Jun. 1999, page 28 of 49
Page 29
Total Harmonic Distortion vs. Output Level (3)
10
100Hz
1kHz
10kHz VCC = 12V, RECmode NR-OFF, RIN RECOUT 0dB = 300mVrms (at RECOUT)
1
0.1
Total Harmonic Distortion T.H.D (%)
HA12209F
0.01 –10–15 –50 5101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (4)
10
100Hz 1kHz
10kHz VCC = 12V, RECmode NR-ON, RIN RECOUT 0dB = 300mVrms (at RECOUT)
1
0.1
Total Harmonic Distortion T.H.D (%)
25
0.01
20
15 10 50 5101520
Output Level Vout (dB)
Rev.2, Jun. 1999, page 29 of 49
25
Page 30
HA12209F
0.5
0.1
0.05
Total Harmonic Distortion T.H.D (%)
Total Harmonic Distortion vs. Frequency (1)
+10dB 0dB
–10dB VCC = 12V, PBmode NR-OFF, AIN PBOUT Vin = 0dB
0.01 100
Total Harmonic Distortion vs. Frequency (2)
0.5 +10dB 0dB –10dB
VCC =12V, PBmode NR-ON, AIN PBOUT Vin = 0dB
0.1
0.05
Total Harmonic Distortion T.H.D (%)
1k 20k10k
Frequency (Hz)
0.01 100
Rev.2, Jun. 1999, page 30 of 49
1k 20k10k
Frequency (Hz)
Page 31
Total Harmonic Distortion vs. Frequency (3)
0.5 +10dB 0dB –10dB
VCC = 12V, RECmode NR-OFF, RIN RECOUT Vin = 0dB
0.1
0.05
Total Harmonic Distortion T.H.D (%)
HA12209F
0.01 100
Total Harmonic Distortion vs. Frequency (4)
0.5 +10dB 0dB –10dB
VCC =12V, RECmode NR-ON, RIN RECOUT Vin = 0dB
0.1
0.05
Total Harmonic Distortion T.H.D (%)
1k 20k10k
Frequency (Hz)
0.01 100
1k 20k10k
Frequency (Hz)
Rev.2, Jun. 1999, page 31 of 49
Page 32
HA12209F
40
60
80
100
Crosstalk (dB)
–120
AIN BIN V
= 12V
CC
PBmode (AIN, PBOUT) Vin = +10dB
Crosstalk vs. Frequency (1)
NR-OFF
NR-ON
–140
10
–40
BIN AIN V
CC
PBmode (BIN, PBOUT) Vin = +10dB
60
80
100
Crosstalk (dB)
–120
10k1k100 100k
Frequency (Hz)
Crosstalk vs. Frequency (2)
= 12V
NR-OFF
NR-ON
–140
10
Rev.2, Jun. 1999, page 32 of 49
10k1k100 100k
Frequency (Hz)
Page 33
–40
PB REC V
CC
PBmode (AIN, RECOUT) Vin = +10dB
60
80
100
Crosstalk (dB)
–120
HA12209F
Crosstalk vs. Frequency (3)
= 12V
NR-ON
NR-OFF
–140
10
–40
REC PB V
CC
RECmode (RIN, PBOUT) Vin = +12dB
60
80
100
Crosstalk (dB)
–120
10k1k100 100k
Frequency (Hz)
Crosstalk vs. Frequency (4)
= 12V
NR-OFF
NR-ON
–140
10
10k1k100 100k
Frequency (Hz)
Rev.2, Jun. 1999, page 33 of 49
Page 34
HA12209F
20
40
60
80
Channel Separation vs. Frequency (1)
VCC = 12V PBmode (AIN, PBOUT), 120µ Vin = +10dB
NR-OFF
Channel Separation (dB)
100
120
10
–20
VCC = 12V PBmode (BIN, PBOUT), 120µ Vin = +10dB
40
60
80
NR-ON
10k1k100 100k
Frequency (Hz)
Channel Separation vs. Frequency (2)
NR-OFF
Channel Separation (dB)
100
120
10
Rev.2, Jun. 1999, page 34 of 49
NR-ON
10k1k100 100k
Frequency (Hz)
Page 35
–40
VCC = 12V RECmode (RIN, RECOUT) Vin = +12dB
–60
HA12209F
Channel Separation vs. Frequency (3)
80
100
Channel Separation (dB)
120
140
10
–40
VCC = 12V PBmode (AIN, PBOUT) NR-OFF Vin = +12dB
–60
NR-ON
NR-OFF
10k1k100 100k
Frequency (Hz)
LINE-MUTE Attenuation vs. Frequency (1)
80
100
LINE-MUTE Attenuation (dB)
120
140
10
10k1k100 100k
Frequency (Hz)
Rev.2, Jun. 1999, page 35 of 49
Page 36
HA12209F
40
60
80
100
LINE-MUTE Attenuation (dB)
–120
LINE-MUTE Attenuation vs. Frequency (2)
VCC = 12V PBmode (BIN, PBOUT) NR-OFF Vin = +12dB
–140
10
LINE-MUTE Attenuation vs. Frequency (3)
–40
VCC = 12V RECmode (RIN, PBOUT) NR-OFF Vin = +12dB
60
80
100
LINE-MUTE Attenuation (dB)
–120
10k1k100 100k
Frequency (Hz)
–140
10
Rev.2, Jun. 1999, page 36 of 49
10k1k100 100k
Frequency (Hz)
Page 37
0
HA12209F
Ripple Relection Ratio vs. Frequency (1)
VCC = 12V PBmode
20
40
60
Ripple Relection Ratio R.R.R. (dB)
80
100
10
Ripple Relection Ratio vs. Frequency (2)
0
VCC = 12V RECmode
PBOUT NR-ON
PBOUT NR-OFF
RECOUT NR-ON
RECOUT NR-OFF
10k1k100 100k
Frequency (Hz)
20
40
60
Ripple Relection Ratio R.R.R. (dB)
80
100
10
RECOUT NR-ON
PBOUT NR-ON/OFF
RECOUT NR-OFF
10k1k100 100k
Frequency (Hz)
Rev.2, Jun. 1999, page 37 of 49
Page 38
HA12209F
20
40
60
Ripple Relection Ratio R.R.R. (dB)
–80
0
VCC = 12V EQOUT N : Normal speed
Ripple Relection Ratio vs. Frequency (3)
N-TYPE II
N-TYPE I
–100
10
50
VCC = 12V N : Normal speed H : High speed
40
30
20
REC-EQ Gain (dB)
10
10k1k100 100k
Frequency (Hz)
REC-EQ Gain vs. Frequency
N-TYPE II
N-TYPE I
H-TYPE I
H-TYPE II
0
10
Rev.2, Jun. 1999, page 38 of 49
10k1k100 100k
Frequency (Hz)
Page 39
EQ Maximum Input Level vs. Supply Voltage (1)
25
f = 1kHz, EQin EQOUT Vin = –26dBs, T.H.D 1% Norm speed, TYPE I
20
15
EQ Maximum Input Level Vinmax (dB)EQ Maximum Input Level Vinmax (dB)
10
8
10 12 14
Supply Voltage (V)
HA12209F
16
EQ Maximum Input Level vs. Supply Voltage (2)
25
f = 1kHz, EQin EQOUT Vin = –26dBs, T.H.D 1% Norm speed, TYPE II
20
15
10
8
10 12 14
16
Supply Voltage (V)
Rev.2, Jun. 1999, page 39 of 49
Page 40
HA12209F
EQ Maximum Input Level vs. Supply Voltage (3)
25
f = 1kHz, EQin EQOUT Vin = –26dBs, T.H.D 1% High speed, TYPE I
20
15
EQ Maximum Input Level Vinmax (dB)EQ Maximum Input Level Vinmax (dB)
10
8
10 12 14
Supply Voltage (V)
16
EQ Maximum Input Level vs. Supply Voltage (4)
25
f = 1kHz, EQin EQOUT Vin = –26dBs, T.H.D 1% High speed, TYPE II
20
15
10
8
10 12 14
16
Supply Voltage (V)
Rev.2, Jun. 1999, page 40 of 49
Page 41
65
60
HA12209F
EQ Signal to Noise Ratio vs. Supply Voltage
55
EQ Signal to Noise Ratio EQ S/N (dB)
50
8
10
1.0
N-TYPE I N-TYPE II H-TYPE I H-TYPE II
A-WTG filter N : Normal speed H : High speed
10 12 14
Supply Voltage (V)
EQ Total Harmonic Distortion vs. Supply Voltage (1)
315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF)
EQin EQOUT, Vin = –26dBs Normal speed, TYPE I
16
EQ Total Harmonic Distortion EQ T.H.D (%)
0.1 8
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 41 of 49
Page 42
HA12209F
EQ Total Harmonic Distortion vs. Supply Voltage (2)
10
315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF)
EQin EQOUT, Vin = –26dBs Normal speed, TYPE II
1.0
EQ Total Harmonic Distortion EQ T.H.D (%)EQ Total Harmonic Distortion EQ T.H.D (%)
0.1 8
10 12 14
Supply Voltage (V)
16
EQ Total Harmonic Distortion vs. Supply Voltage (3)
10
315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF)
EQin EQOUT, Vin = –26dBs High speed, TYPE I
1.0
0.1 8
10 12 14
Supply Voltage (V)
16
Rev.2, Jun. 1999, page 42 of 49
Page 43
EQ Total Harmonic Distortion vs. Supply Voltage (4)
10
315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF)
EQin EQOUT, Vin = –26dBs High speed, TYPE II
1.0
EQ Total Harmonic Distortion EQ T.H.D (%)
0.1 8
10 12 14
Supply Voltage (V)
HA12209F
16
EQ Total Harmonic Distortion vs. Input Level (1)
100
315Hz 1kHz 5kHz 10kHz
VCC = 12V, EQin EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE I
10
1.0
EQ Total Harmonic Distortion EQ T.H.D (%)
0.1
–30
Input Level (dB)
0
30–20 –10 10 20
Rev.2, Jun. 1999, page 43 of 49
Page 44
HA12209F
EQ Total Harmonic Distortion vs. Input Level (2)
100
315Hz 1kHz 5kHz 10kHz
VCC = 12V, EQin EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE II
10
1.0
EQ Total Harmonic Distortion EQ T.H.D (%)EQ Total Harmonic Distortion EQ T.H.D (%)
0.1
–30
Input Level (dB)
0
30–20 –10 10 20
EQ Total Harmonic Distortion vs. Input Level (3)
100
315Hz 2kHz 10kHz 20kHz
VCC = 12V, EQin EQOUT, Vin = –26dBs = 0dB High speed, TYPE I
10
1.0
0.1
–30
0
Input Level (dB)
30–20 –10 10 20
Rev.2, Jun. 1999, page 44 of 49
Page 45
EQ Total Harmonic Distortion vs. Input Level (4)
100
315Hz 2kHz 10kHz 20kHz
VCC = 12V, EQin EQOUT, Vin = –26dBs = 0dB High speed, TYPE II
10
1.0
EQ Total Harmonic Distortion EQ T.H.D (%)
0.1 –30
0
Input Level (dB)
HA12209F
30–20 –10 10 20
REC-MUTE Attenuation vs. Frequency
–40
VCC = 12V
60
80
100
REC-MUTE Attenuation (dB)
120
140
10
10k1k100 100k
Frequency (Hz)
Rev.2, Jun. 1999, page 45 of 49
Page 46
HA12209F
40
30
20
10
MS AMP. Gain (dB)
MS AMP. Gain vs. Frequency
VCC =12V
MAOUT
MSIN
0
–10
10
10
VCC =12V
5
0
–5
MS Sensitivity (dB)
–10
10k1k100 100k
Frequency (Hz)
MS Sensitivity vs. Frequency
Hi Lo Lo Hi
–15
10
Rev.2, Jun. 1999, page 46 of 49
10k1k100 100k
Frequency (Hz)
Page 47
No-Signal Sensing Time vs. Resistance
10000
V
1000
100
No-Signal Sensing Time (ms)
10
1
CC
22
R12 C10
29
MSDET
10k 100k 1M
Resistance R12 ()
HA12209F
PBOUT MSOUT
+10dB 0dB –10dB
VS = 12V, f = 5kHz
Signal Sensing Time vs. Capacitance
1000
PBOUT
MSOUT
100
10
Signal Sensing Time (ms)
1.0
0.1
V
CC
22
R12 C10
29
MSDET
0.01 0.1 1.0
+10dB 0dB –10dB
VS = 12V, f = 5kHz
Capacitor C10 (µF)
Rev.2, Jun. 1999, page 47 of 49
Page 48
HA12209F
Package Dimensions
12.8 ± 0.3
10.0
42
29
43
12.8 ± 0.3
56
1
*0.32 ± 0.08
0.30 ± 0.06
0.13
M
0.775 0.775
0.35
0.10
*Dimension including the plating thickness
Base material dimension
14
28
15
+0.1
2.20
–0.09
0.1
0.65
2.54 Max
0.15 ± 0.04
*0.17 ± 0.05
Hitachi Code JEDEC EIAJ Weight
1.40
0.60 ± 0.15
(reference value)
Unit: mm
0 – 8
FP-56
— —
0.5 g
Rev.2, Jun. 1999, page 48 of 49
Page 49
HA12209F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, in cluding intellectual property rights, in connection with u se of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail­safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http://semiconductor.hitachi.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160
Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg
Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.2, Jun. 1999, page 49 of 49
Loading...