HA12173300 mVrms300 mVrms300 mVrms7.0V16V
HA12174450 mVrms300 mVrms300 mVrms8.0V16V
HA12175580 mVrms300 mVrms300 mVrms9.5V16V
HA12177775 mVrms300 mVrms300 mVrms12.0V16V
Note: 1. The minimum operating voltage of HA12173 series are defferent from the HA12163 series
(Dolby B - type).
1
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value)
Terminal
Pin No.
2, 41TAI100 kΩ VCC/2
nameZin
DC
voltage Equivalent circuitDescription
Tape input
VCC/ 2
4, 39RAIRadio input
25MSIMusic sensor
rectifier input
10, 33HLS DET—2.5 VTime constant
pin for rectifier
11, 32LLS DET
3BIAS—0.28 V
GND
Reference
current input
Rev.1, Nov. 1992, page 2 of 66
Page 3
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Terminal
Pin No.
24MS DET—V
19MS GV100 kΩ —
40RIP—VCC/2Ripple filter
nameZin
DC
voltage Equivalent circuitDescription
CC
GND
DGND
GND
Time constant
pin for rectifier
Mode control
input
Rev.1, Nov. 1992, page 3 of 66
Page 4
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Terminal
Pin No.
nameZin
43, 56EQ OUT—VCC/2
DC
voltage Equivalent circuitDescription
V
CC
GND
Equalizer output
6, 37PB OUTPlay back
(Decode) output
30MS V
REF
Reference
voltage buffer
output
26MA OUTMusic sensor
amp output
47, 52V
REF
Reference
voltage buffer
output
12, 31REC OUTRecording
(Encode) output
8, 35SS2Spectral skewing
amp. output
44, 55EQ OUT-M—VCC/2
V
CC
Equalizer output
(Metal)
Rev.1, Nov. 1992, page 4 of 66
GND
Page 5
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Terminal
Pin No.
21MS OUT——
22V
23MS V
20D GND—0V—Digital (Logic)
27MS GNDMusic sensor
49, 50GNDGround
48, 51FIN—VCC/2PB - EQ input for
nameZin
CC
CC
—VCC—Power supply
DC
voltage Equivalent circuitDescription
MS V
D GND
CC
Music sensor
output to MPU
ground
ground
forward
46, 53RINPB - EQ input for
reverse
45, 54NFINegative
feedback
terminal of PB EQ amp.
28NOINegative
feedback input
for normal speed
29FFINegative
feedback input
for FF or REW
Rev.1, Nov. 1992, page 5 of 66
Page 6
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
HA12173 series are provided with four line output level, which will permit on optimum overload margin
for power supply conditions. And this series are designed to operate on either single supply or split supply.
Table 1Supply Voltage
ItemHA12173HA12174HA12175HA12177
Single supply7.0 V to 16.0 V8.0 V to 16.0 V9.5 V to 16.0 V12.0 V to 16.0 V
Split supplyGND level±5.0 V to 8.0 V±5.0 V to 8.0 V±5.0 V to 8.0 V±6.0 V to 8.0 V
VEE level±3.5 V to ±8.0 V ±4.0 V to 8.0 V±4.8 V to 8.0 V±6.0 V to 8.0 V
A. The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories.
B. In case of using digital GND terminal referring to GND level, operating voltage range varies
depending on the condition at power on. On using the HA12173/174/175, use within the following
ranges to avoid latch-ups.
When power on in NR-OFF mode: ±5.0 V to ±8.0 V
When power on in NR-ON mode: ±5.7 V to ±8.0 V
C. In the reverse-voltage conditions such as ‘D-GND is higher than V
GND’, excessive current flows into the D-GND to destory this IC. To prevent such destru ctio n, pa y
attention to the followings on using.
Single power supply : Short-circuit the D-GND and GND directory on the board mounting this IC.
Split power supply: Avoid reverse conditions of D-GND and V
transient-time of power ON/OFF.
’ or ‘D-GND is lower than
CC
or VEE voltage, including
CC
Reference Voltage
For the single supply operation these devices provide the reference voltage of half the supply voltage that is
the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about
1/100 compared with their usual value. The Reference voltage are provided for the left channel and the
right channel separately. The block diagram is shown as figure 1.
Rev.1, Nov. 1992, page 11 of 66
Page 12
HA12173 Series
22
47
V
(L)
V
CC
+
REF
RIPGND 495040
+
C22
–
+
–
+
–
52
1 Fµ
L channel
reference
Music sensor
reference
R channel
reference
V
(R)
REF
MS V52
REF
Figure 1 The Block Diagram of Reference Voltage Supply
Operating Mode Control
HA12173 series provide fully electronic switching circuits. And each operating mode control are
controlled by parallel data (DC voltage).
Table 2Threshold Voltage (V
Pin No.LowHighUnitTest condition
13, 14, 15, 16,
17, 18, 19
–0.2 to 1.53.5 to 5.3V
)
TH
Input PinMeasure
22 k
V
Rev.1, Nov. 1992, page 12 of 66
Page 13
HA12173 Series
Table 3Switching Truth Table
Pin No.LowHigh
13B - NRC - NR
14NR - OFFNR - ON
15PBREC
16TAPERADIO
17120 µ (NORMAL)70 µ (METAL or CHROME)
18FORWARDREVERSE
19SER (FF or REV)REP (NORMAL SPEED)
Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 20 (DGND pin) as
reference pin. On split supply use, same V
pin.
This means that it can be controlled directly by microprocessor. But power supply should be
over ±5 V, notwithstanding the prescription of table 1.
2. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
3. Over shoot level and under shoot level of input signal must be the standardized (High: 5.3 V,
Low: –0.2 V)
4. When connecting microcomputer or Logic-IC with HA12173 series directly, there is apprehension
of rush-current under some transition timming of raising voltage or falling voltage at V
On using, connect protective resistors of 10 to 22 kΩ to all the control pins. It is shown is test
circuit on this data sheet. And pins fixed to low level should be preferably open.
5. Pay attention not to make digital GND voltage lower than GND voltage.
The each level shown above is typical value
when offering PBOUT level to PBOUT pin.
(EQ AMP Gv = 40 dB f = 1 kHz)
RECOUT
300 mVrms
(–8.2 dBs)
After replace R34 and R35 with a half-fix volume of 10 kΩ, adjust RECOUT level to be Dolby level with
playback mode.
Note on Connecting with Tape Head to IC
This IC has no internal resistor to give the DC bias current to equalizer amp., therefore the DC bias current
will give through the head. This IC provides the Vref buffer output pin for Rch and Lch separ ately (has
two Vref terminal). In case of use that the Rch and Lch reference of head are connected commonly, please
use one of Vref terminals of IC (47 pin or 52 pin) for head reference. If both 47 pin and 52 pin of IC are
connected, rush current give the great damage to IC. The application circuit is shown in figure 3.
Rev.1, Nov. 1992, page 14 of 66
Page 15
43
44
HA12173 Series
45
46
47
48
49
50
51
52
53
54
55
V (L)
REF
GND
GND
V (R)
REF
–
R/F
R/F
– +
+
56
Figure 3 Application Circuit
Rev.1, Nov. 1992, page 15 of 66
Page 16
HA12173 Series
The Sensitivity Adjustment o f a Music Sensor
Adjusting MS AMP. gain by external resistor, the sensitivity of music sensor can set up.
TAI (L)
X1
–6 dB
X1
TAI (R)
R28R27
R26R25
C28
4700 p
MS
V
REF
L·R signal addition circuit
+
–
26 dB
LPF
25 kHzMS AMP
C14
0.01 µ
FFI NOIMA
OUT
+
–
V
CC
R24
330 k
MSI MS
DET
DET
100 k
+
C13
0.33 µ
Unit R:
MS OUT
D GND
Ω
C: F
DV
CC
I
R
L
Microcomputer
D GND
L
Rev.1, Nov. 1992, page 16 of 66
Figure 4 Music Sensor Block Diagram
Page 17
HA12173 Series
Gv1
Gv
[dB]
Gv2
1. Normal mode
Gv1 = 20log 1+
f1=
⋅π ⋅
2
R27
R28
1
C14⋅100 k
f
1
Figure 5 Frequency Response
[dB]
[Hz], f 2=25 k[Hz]
f
2
Normal speed
f
3
FF or REV
1 k1001010 k25 k100 k
f [Hz]
f
4
2. FF or REW mode
R25
Gv2 = 20log 1+
=
f3
2⋅π⋅C28⋅R26
1
[dB]
R26
[Hz],f4=25k [Hz]
A standard level of TAI pin is 30 mVrms and the gain for TAI to MS AMP input is 10, therefore, the
other channel sensitivity of music sensor (S) is computed by the formula mentioned below.
S=20 log
C
30
⋅
10⋅ A
[dB]
1
A = MS AMP. gain (B dB)
S = –7.3–B [dB]C = 130 mVrms (typ.)
S is 6 dB up in case of the both channels.
C = The sensing level of music sensor
Rev.1, Nov. 1992, page 17 of 66
Page 18
HA12173 Series
Music Sensor Output (MS OUT)
As for the internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN
Type directly, Output level will be “high” when sensing no sign a l. And outp ut level will be “low” when
sensing signal.
Connection with microcomputer, design I
– MSOUTLo*
DV
I
L
CC
=
R
L
at 1 mA typ.
L
* MSOUTLo: Sensing signal (about 1 V)
Notes: 1. Supply voltage of MS OUT pin must be less than V
2. MS V
pin and VCC pin are required the same voltage.
CC
voltage.
CC
The Tolerances of External Components for Dolby NR-block
For adequate Dolby NR tracking response, take external components shown below.
C21
2200 p
SS1
(L)
±5%
C20
2200 p
±5%
SS2
(L)
R31
560
±2%
CCR
(L)
C18
2200 p
±5%
HLS
DET (L)
C17
0.1
±10%
µ
R32
22 k
±2%
3736353433
PB OUT
(L)
32
LLS
DET (L)
C16
0.1
µ
±10%
HA12173 Series (PB 1 Chip)
3
PB OUT
(R)
67910
R11
18 k
±2%
R12
22 k
±2%
SS1
(R)
C7
2200 p
±5%
C6
2200 p
±5%
SS2
(R)
8
R13
560
±2%
CCR
(R)
C9
2200 p
±5%
DET(R)BIAS
HLS
C10
0.1
±10%
DET(R)
µ
LLS
11
C11
0.1
µ
±10%
Unit R:
C: F
Figure 6 Tolerances of External Components
PB Equalizer for Double Speed
PB equalizer can be design for double speed by using external components shown in figure 7. Application
data is shown in figure 8.
T.H.D. = 1 %
0 dB = 450 mVrms
f = 1 kHz
RAIin
PBmode
PBout
20
NR-B,NB-OFF
NR-C
15
Maximum Output Level Vo max (dB)
10
6
810121416
Supply Voltage V (V)
CC
Maximum Output Level vs.
Supply Voltage (2)
25
HA12174
T.H.D. = 1 %
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
20
NR-B,NB-OFF
NR-C
15
Maximum Output Level Vo max (dB)
10
6
810121416
Supply Voltage V (V)
CC
Signal to Noise Ratio vs. Supply Voltage (1)
100
HA12174
f = 1 kHz
CCIR/ARM
PBmode
PBout
90
80
NR-C
NR-B
NR-OFF
Signal to Noise Ratio S/N (dB)
70
6
810121416
Supply Voltage V (V)
CC
Signal to Noise Ratio vs. Supply Voltage (2)
90
HA12174
NR-OFF
f = 1 kHz
CCIR/ARM
RECmode
80
RECout
NR-B
70
Signal to Noise Ratio S/N (dB)
NR-C
60
6
810121416
Supply Voltage V (V)
CC
Rev.1, Nov. 1992, page 46 of 66
Page 47
Total Harmonic Distortion vs. Output Level (1)
5
HA12174
V = 9 V
CC
0 dB = 450 mVrms
2
RAIin
PBmode
1.0
PBout
NR-OFF
0.5
0.2
f = 100 Hz
0.1
0.05
10 kHz
1 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
HA12173 Series
0.01
–15
–10
–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (2)
5
HA12174
V = 9 V
CC
0 dB = 450 mVrms
2
RAIin
PBmode
PBout
1.0
NR-B
0.5
0.2
f = 100 Hz
0.1
0.05
1 kHz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 47 of 66
Page 48
HA12173 Series
Total Harmonic Distortion vs. Output Level (3)
5
HA12174
V = 9 V
CC
2
0 dB = 450 dB
RAIin
PBmode
1.0
PBout
NR-C
0.5
f = 100 Hz
0.2
0.1
0.05
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
10 kHz
1 kHz
–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (4)
5
HA12174
V = 9 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-OFF
0.5
0.2
0.1
0.05
f = 100 Hz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
1 kHz
–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 48 of 66
Page 49
Total Harmonic Distortion vs. Output Level (5)
5
HA12174
V = 9 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-B
0.5
HA12173 Series
0.2
0.1
0.05
f = 100 Hz
1 kHz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (6)
5
HA12174
V = 9 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-C
0.5
0.2
f = 100 Hz
10 kHz
0.1
0.05
1 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 49 of 66
Page 50
HA12173 Series
–20
–40
0
HA12174
Ripple Rejection Ratio vs. Frequency
PBmode
PBout
NR-C
NR-OFF
HA12175
–60
–80
Ripple Rejection Ratio R.R.R. (dB)
–100
20501002005001 k2 k5 k10 k20 k
Frequency (Hz)
TAlin Input Amp. Gain vs. Frequency
28
HA12175
24
20
PBout-OFF
RECout-OFF/B/C
NR-B
Gain (dB)
Rev.1, Nov. 1992, page 50 of 66
16
V = 12 V
CC
12
8
201001 k10 k100 k
PBmode
Frequency (Hz)
Page 51
RAlin Input Amp. Gain vs. Frequency
28
HA12175
HA12173 Series
24
20
Gain (dB)
16
12
8
201001 k10 k100 k
24
HA12175
21
NR-C
V = 9.5 V, 12 V, 16V
18
CC
PBout-OFF/B/C
RECout-OFF
V = 12 V
CC
RECmode
Frequency (Hz)
Encode Boost vs. Frequency (1)
16 V
Vin = –60 dB
15
12
9
6
Encode Boost (dB)
3
0
–3
–6
100
–40 dB
9.5 V, 12 V
–30 dB
–20 dB
–10 dB
0 dB
3001k3k10k 15k
Frequency (Hz)
Rev.1, Nov. 1992, page 51 of 66
Page 52
HA12173 Series
10.8
HA12175
9.6
NR-B
V = 9.5 V, 12 V, 16 V
8.4
7.2
6.0
4.8
3.6
Encode Boost (dB)
2.4
1.2
–1.2
3
–3
CC
0
100
6
HA12175
NR-C
V = 9.5 V, 12 V, 16 V
CC
0
Encode Boost vs. Frequency (2)
Vin = –40 dB
–30 dB
16 V
9.5 V, 12 V
3001k3k10k20k
–20 dB
–10 dB
0 dB
Frequency (Hz)
Decode Cut vs. Frequency (1)
Vin = 0 dB
–10 dB
–20 dB
–6
–9
–12
Decode Cut (dB)
–15
–18
–21
–24
1003001 k3 k10 k 15 k
Rev.1, Nov. 1992, page 52 of 66
16 V
9.5 V, 12V
Frequency (Hz)
–30 dB
–40 dB
–60 dB
Page 53
HA12173 Series
1.2
HA12175
0
–1.2
–2.4
–3.6
–4.8
–6.0
Decode Cut vs. Frequency (2)
9.5 V, 12 V
16 V
Decode Cut (dB)
–7.2
–8.4
–9.6
–10.8
NR-B
V = 9.5 V, 12 V, 16 V
CC
1003001 k3 k10 k20 k
Frequency (Hz)
Maximum Output Level vs.
Supply Voltage (1)
25
HA12175
T.H.D. = 1 %
0 dB = 580 mVrms
f = 1 kHz
RAIin
PBmode
PBout
20
Maximum Output Level vs.
Supply Voltage (2)
25
HA12175
T.H.D. = 1 %
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
20
Vin = 0 dB
–10 dB
–20 dB
–30 dB
–40 dB
NR-B, NR-OFF
NR-C
15
Maximum Output Level Vo max (dB)
10
810121416
Supply Voltage V (V)
CC
NR-C
NR-B, NR-OFF
15
Maximum Output Level Vo max (dB)
10
810121416
Supply Voltage V (V)
CC
Rev.1, Nov. 1992, page 53 of 66
Page 54
HA12173 Series
Signal to Noise Ratio vs.
Supply Voltage (1)
100
HA12175
f = 1 kHz
CCIR/ARM
PBmode
PBout
90
80
NR-C
NR-B
NR-OFF
Signal to Noise Ratio S/N (dB)
70
810121416
Supply Voltage V (V)
CC
Signal to Noise Ratio vs.
Supply Voltage (2)
90
HA12175
NR-OFF
f = 1 kHz
CCIR/ARM
80
RECmode
RECout
NR-B
70
Signal to Noise Ratio S/N (dB)
NR-C
60
8 10121416
Supply Voltage V (V)
CC
Total Harmonic Distortion vs. Output Level (1)
5
HA12175
V = 12 V
CC
0 dB = 580 mVrms
2
RAIin
PBmode
1.0
PBout
NR-OFF
0.5
0.2
0.1
0.05
f = 10 kHz
100 Hz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
1 kHz
–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 54 of 66
Page 55
Total Harmonic Distortion vs. Output Level (2)
5
HA12175
V = 12 V
CC
0 dB = 580 mVrms
2
RAIin
PBmode
PBout
1.0
NR-B
0.5
0.2
0.1
f = 100 Hz
0.05
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
1 kHz
HA12173 Series
0.01
–15
–10
–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (3)
5
HA12175
V = 12 V
CC
0 dB = 580 mVrms
2
RAIin
PBmode
PBout
1.0
NR-C
0.5
0.2
0.1
0.05
f = 100 Hz
10 kHz
1 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 55 of 66
Page 56
HA12173 Series
Total Harmonic Distortion vs. Output Level (4)
5
HA12175
V = 12 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-OFF
0.5
0.2
0.1
0.05
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
f = 100 Hz
10 kHz
1 kHz
–10
–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (5)
5
HA12175
V = 12 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
1.0
RECout
NR-B
0.5
0.2
f = 100 Hz
0.1
0.05
1 kHz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
Rev.1, Nov. 1992, page 56 of 66
0.01
–15
–10
–505101520
Output Level Vout (dB)
Page 57
Total Harmonic Distortion vs. Output Level (6)
5
HA12175
V = 12 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-C
0.5
f = 100 Hz
HA12173 Series
–20
–40
0.2
0.1
0.05
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
–10
–505101520
Output Level Vout (dB)
Ripple Rejection Ratio vs. Frequency
0
HA12175
PBmode
PBout
1 kHz
NR-C
NR-OFF
–60
–80
Ripple Rejection Ratio R.R.R. (dB)
–100
20501002005001 k2 k5 k10 k20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 57 of 66
NR-B
Page 58
HA12173 Series
HA12177
TAlin Input Amp. Gain vs. Frequency
30
HA12177
PBout-OFF
26
22
RECout-OFF/B/C
Gain (dB)
18
14
V = 14 V
CC
PBmode
10
201001 k10 k100 k
Frequency (Hz)
RAlin Input Amp. Gain vs. Frequency
30
HA12177
26
22
PBout-OFF/B/C
Gain (dB)
18
14
10
201001 k10 k100 k
RECout-OFF
V = 14 V
CC
RECmode
Frequency (Hz)
Rev.1, Nov. 1992, page 58 of 66
Page 59
HA12173 Series
24
HA12177
21
NR-C
V = 12 V, 14 V, 16 V
CC
18
15
12
9
6
Encode Boost (dB)
3
0
–3
–6
100
10.8
HA12177
9.6
NR-B
V = 12 V, 14 V, 16 V
CC
8.4
7.2
Encode Boost vs. Frequency (1)
Vin = –60 dB
–40 dB
16 V
–30 dB
12 V, 14 V
–20 dB
–10 dB
0 dB
3001 k3 k10 k 15 k
Frequency (Hz)
Encode Boost vs. Frequency (2)
Vin = –40 dB
–30 dB
6.0
4.8
3.6
Encode Boost (dB)
2.4
1.2
0
–1.2
100
16 V
12 V, 14 V
3001 k3 k10 k20 k
–20 dB
–10 dB
0 dB
Frequency (Hz)
Rev.1, Nov. 1992, page 59 of 66
Page 60
HA12173 Series
6
HA12177
3
NR-C
V = 12 V, 14 V, 16 V
CC
0
–3
Decode Cut vs. Frequency (1)
Vin = 0 dB
–10 dB
–20 dB
–6
–9
–12
Decode Cut (dB)
–15
–18
–21
–24
1003001 k3 k10 k 15 k
12 V, 14 V
16 V
–30 dB
–40 dB
–60 dB
Frequency (Hz)
1.2
HA12177
0
–1.2
–2.4
–3.6
Decode Cut vs. Frequency (2)
Vin = 0 dB
–10 dB
–20 dB
12 V, 14 V
–4.8
–6.0
Decode Cut (dB)
–7.2
–8.4
NR-B
–9.6
V = 12 V, 14 V, 16 V
CC
–10.8
1003001 k3 k10 k20 k
Rev.1, Nov. 1992, page 60 of 66
16 V
–30 dB
–40 dB
Frequency (Hz)
Page 61
HA12173 Series
Maximum Output Level vs.
Supply Voltage (1)
20
HA12177
T.H.D. = 1%
0 dB = 775 mVrms
f = 1 kHz
RAIin
PBmode
PBout
15
NR-B, NR-OFF
NR-C
Maximum Output Level Vo max (dB)
10
10121416
Supply Voltage V (V)
CC
Maximum Output Level vs.
Supply Voltage (2)
20
HA12177
T.H.D. = 1%
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
15
NR-B, NR-OFF
NR-C
Maximum Output Level Vo max (dB)
10
10121416
Supply Voltage V (V)
CC
Signal to Noise Ratio vs. Supply Voltage (1)
100
HA12177
f = 1 kHz
CCIR/ARM
PBmode
PBout
90
80
NR-C
NR-B
NR-OFF
Signal to Noise Ratio S/N (dB)
70
10121416
Supply Voltage V (V)
CC
Signal to Noise Ratio vs. Supply Voltage (2)
90
HA12177
NR-OFF
f = 1 kHz
CCIR/ARM
80
RECmode
RECout
NR-B
70
Signal to Noise Ratio S/N (dB)
60
10121416
Supply Voltage V (V)
NR-C
CC
Rev.1, Nov. 1992, page 61 of 66
Page 62
HA12173 Series
Total Harmonic Distortion vs. Output Level (1)
5
HA12177
V = 14 V
CC
0 dB = 775 mVrms
2
RAIin
PBmode
1.0
PBout
NR-OFF
0.5
0.2
f = 10 kHz
0.1
0.05
1 kHz, 100 Hz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15–10–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (2)
5
HA12177
V = 14 V
CC
0 dB = 775 mVrms
2
RAIin
PBmode
1.0
PBout
NR-B
0.5
f = 100 Hz
0.2
0.1
0.05
1 kHz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15–10–505101520
Output Level Vout (dB)
Rev.1, Nov. 1992, page 62 of 66
Page 63
Total Harmonic Distortion vs. Output Level (3)
5
HA12177
V = 14 V
CC
0 dB = 775 mVrms
2
RAIin
PBmode
PBout
1.0
NR-C
0.5
0.2
f = 100 Hz
HA12173 Series
0.1
0.05
1 kHz
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15–10–505101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (4)
5
HA12177
V = 14 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
1.0
RECout
NR-OFF
0.5
0.2
0.1
f = 100 Hz
0.05
10 kHz
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15–10–505101520
1 kHz
Output Level Vout (dB)
Rev.1, Nov. 1992, page 63 of 66
Page 64
HA12173 Series
Total Harmonic Distortion vs. Output Level (5)
5
HA12177
V = 14 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
1.0
RECout
NR-B
0.5
0.2
0.1
0.05
Total Harmonic Distortion T.H.D. (%)
0.02
0.01
–15
f = 1 kHz
100 Hz
10 kHz
–10–50 5101520
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (6)
5
HA12177
V = 14 V
CC
0 dB = 300 mVrms
2
RAIin
RECmode
1.0
RECout
NR-C
0.5
f = 100 Hz
0.2
1 kHz
0.1
0.05
10 kHz
Total Harmonic Distortion T.H.D. (%)
Rev.1, Nov. 1992, page 64 of 66
0.02
0.01
–15–10–50 5101520
Output Level Vout (dB)
Page 65
–20
–40
0
HA12177
HA12173 Series
Ripple Rejection Ratio vs. Frequency
PBmode
PBout
NR-C
NR-OFF
–60
–80
Ripple Rejection Ratio R.R.R. (dB)
–100
20501002005001 k2 k5 k10 k20 k
Frequency (Hz)
NR-B
Rev.1, Nov. 1992, page 65 of 66
Page 66
HA12173 Series
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, in cluding
intellectual property rights, in connection with u se of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Europe: http://www.hitachi-eu.com/hel/ecg
Asia : http://sicapac.hitachi-asia.com
Japan: http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Colophon 2.0
Rev.1, Nov. 1992, page 66 of 66
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.