
GP1A17
GP1A17
Wide Gap Type, OPIC Photointerrupter
■ Features ■ Outline Dimensions
1. Built-in Schmidt trigger circuit
2. Wide gap between light emitter and detec tor (10mm
3. Operating supply voltage V
)
: 4.5 to 17V
CC
4. TTL and CMOS compatible output
■ Applications
1. Copiers
2. Analyzers, measuring instruments, etc.
Internal connection diagram
Voltage regulator
1
23
5 - 0.45
25.4
2-φ 3.2
32.0
±
0.2
(
15
5
(
4
±
0.2
±
0.2
±
0.3
18.6
10.0
1A17
0.3
)
15.24
342
Amp.
10kΩ
(
1.5
(
Unit : mm
1 Anode
)
2 Cathode
2 - C2.0
)
)
2.5
(
Detector center
(
3.0
)
* Unspecified tolerances shall be
as follows;
Dimensions
6.0<d<=18.0
18.0<d<=25.0
* ( ): Reference dimensions
15.2
1.27
d<=6.0
6.0
)
±
0.2
2.0
Slit width
(
Both sides
of detector
and emitter
(
1.27
Tolerance
± 0.1
± 0.2
± 0.25
3 V
CC
4 V
O
5 GND
MIN.
5.0
)(
)
)
MIN.
6.0
*“OPIC” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal processing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current I
Reverse voltage V
F
FM
R
50 mA
1A
6V
Power dissipation P 75 mW
Supply voltage V
Output
Output current I
Power dissipation P
Operating tamperature T
opr
Storage temperture T
*2
Soldering temperature T
*1 Pules width
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
<=100 µ s, Duty ratio=0.01
-
CC
O
O
stg
sol
0.5 to+17 V
50 mA
250 mW
-
25 to+85 ˚C
-
40 to+100 ˚C
260 ˚C

GP1A17
■ Electro-optical Charcateristics
Parameter Conditions MIN. TYP. MAX. Unit
Input
Forward voltage I
Reverse current V
Operating supply voltage V
Low level output voltage V
Output
High level output voltage V
Low level supply current I
High level supply current I
*3
“ Low→High” threshold
input current
*4
Transfer
charac-
teristics
*3 I
represents forward current when output goes from low to high.
FLH
represents forward current when output goes from high to low.
*4 I
FHL
Hysteresis stands for I
Hysteresis
“Low→High” propagation delay time
“High→Low” propagation delay time
Rise time t
Response time
Fall time t
.
FHL/IFLH
Symbol
V
I
I
FHL/IFLH
t
t
■ Recommended Operating Conditions
Parameter Symbol
Low level output current
Forward current I
I
OL
Operating temperature
Ta = 0 to + 70˚C
F
= 7mA - 1.13 1.4 V
F
F
I
CCLVCC
CCHVCC
FLHVCC
PLH
PHL
=3V - - 10 µA
R
R
CC
= 16mA, VCC= 5V, IF= 0 - 0.15 0.4 V
OLIOL
OHVCC
= 5V, IF= 7mA 4.9 - - V
4.5 - 17 V
= 5V, IF= 0 - 2.5 5.0 mA
= 5V, IF= 7mA - 1.0 3.0 mA
r
f
=5V
Vcc= 5V
VCC=5V
I
= 7mA
F
R
= 280Ω
L
- 3.0 7.0 mA
0.55 0.65 0.95 -
-
-
39
515
- 0.1 0.5
- 0.05 0.5
MIN. MAX. Unit
-16mA
10 20 mA
(
Ta= 25˚C
µs
)
Fig. 1 Forward Current vs. Ambient
Temperature
60
50
)
mA
40
(
F
30
20
Forward current I
10
0
0
Ambient temperature Ta (˚C
)
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
300
)
250
mW
(
O
200
150
100
50
Output power dissipation P
100755025
85-25 -25 85
0
0
25 50 75 100
Ambient temperature Ta (˚C
)

GP1A17
Fig. 3 Low Level Output Current vs.
Ambient Temperature
60
)
50
mA
(
OL
40
30
20
10
Low level output current I
0
-25 85
0
25 50 75 100
Ambient temperature Ta (˚C
)
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
1.2
T
= 25˚C
FLH
/I
1.0
FHL
0.8
0.6
a
I
FLH
I
FHL
Fig. 4 Forward Current vs. Forward Voltage
500
25˚C
0˚C
- 25˚C
)
(
mA
F
200
100
= 75˚C
T
a
50˚C
50
20
10
5
Forward current I
2
1
Forward voltage VF (V
)
3.50 0.5 1 1.5 2 2.5 3
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.4
VCC=5V
FLH
/I
1.2
FHL
1.0
0.8
I
FLH
I
FHL
I
= 1 at VCC=5V
0.4
FLH
Relative threshold input current I
0.2
0
5
Supply voltage VCC (V
)
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
1.0
0.5
)
V
(
OL
0.2
0.1
0.05
Low level output voltage V
0.02
0.01
Low level output current I
OL
V
CC
T
a
(mA
= 25˚C
=5V
502052
)
0.6
Relative threshold input current I
0.4
201510
-25
0
Ambient temperature T
= 1 at Ta= 25˚C
I
FLH
a
(˚C
100755025
)
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.4
V
=5V
= 30mA
16mA
5mA
CC
)
(˚C
a
)
V
(
0.3
OL
I
OL
0.2
0.1
Low level output voltage V
100101
0
-25
0
25 50 75 100
Ambient temperature T

GP1A17
Fig. 9 Supply Current vs. Supply Voltage
7
6
)
mA
5
(
4
25˚C
=-
T
a
25˚C
3
I
CCL
2
Supply current ICCL/ICCH
1
I
CCH
0
414
268101216
Supply voltage V
(V
CC
85˚C
Ta=-25˚C
25˚C
85˚C
)
Fig.11 Rise Time, Fall Time vs. Load Resistance
0.5
)
0.4
µ s
(
f
, t
r
0.3
0.2
V
=5V
CC
I
= 7mA
F
T
= 25˚C
a
t
r
Fig.10 Propagation Delay Time vs.
Forward Current
7
)
6
µ s
(
PHL
5
,t
PLH
4
3
2
1
Propagation delay time t
0
0
10
Forward current I
20 30
F
(mA
VCC=5V
= 280Ω
R
L
T
= 25˚C
a
)
t
PHL
t
PLH
40 50
Rise time, fall time t
0.1
0
Load resistance R
(kΩ
L
t
f
520.5
1010.2
)
Test Circuit for Response Time
Input
t
O
PLH
Output
t
r
50%
t
PHL
t
90%
10%
f
V
OH
1.5V
V
OL
tr= tf= 0.01µs
Z
= 50Ω
O
Voltage regulator
10kΩ
V
IN
Amp.
+5V
280Ω
V
0.01µF
47Ω
■ Precautions for Use
(1) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF
between Vcc and GND near the device.
(2) As for other general cautions, refer to the chapter “Precautions for Use”.