Datasheet FQI7N60, FQB7N60 Datasheet (Fairchild Semiconductor)

Page 1
FQB7N60 / FQI7N60
!
"
!
!
!
"
"
"
!
"
!
!
!
"
"
"
April 2000
QFET
QFET
QFETQFET
TM
General Description
FQB7N60 / FQI7N60
These N-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.
D
G
S
D2-PAK
FQB Series
Absolute Maximum Ratings
Symbol Parameter FQB7N60 / FQI7N60 Units
V
DSS
I
D
I
DM
V
GSS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt P
D
, T
T
J
STG
T
L
Drain-Source Voltage 600 V Drain Current
Drain Current - Pulsed Gate-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Power Dissipation (TA = 25°C) * Power Dissipation (T
Operating and Storage Temperature Range -55 to +150 °C Maximum lead temperature for soldering purposes, 1/8 from case for 5 seconds
G
D
S
TC = 25°C unless otherwise noted
- Continuous (T
- Continuous (T
= 25°C)
C
- Derate above 25°C 1.14 W/°C
= 25°C)
C
= 100°C)
C
Features
• 7.4A, 600V, R
• Low gate charge ( typical 29 nC)
• Low Crss ( typical 16 pF)
• Fast switching
• 100% avalanche tested
• Improved dv/dt capability
I2-PAK
FQI Series
(Note 1)
(Note 2) (Note 1) (Note 1) (Note 3)
= 1.0Ω @VGS = 10 V
DS(on)
G
7.4 A
4.7 A
29.6 A
±
30 V
580 mJ
7.4 A
14.2 mJ
4.5 V/ns
3.13 W 142 W
300 °C
D
S
Thermal Characteristics
Symbol Parameter Typ Max Units
R
θ
JC
R
θ
JA
R
θ
JA
* When mounted on the minimum pad size recommended (PCB Mount)
©2000 Fairchild Semiconductor International
Thermal Resistance, Junction-to-Case -- 0.88 °CW Thermal Resistance, Junction-to-Ambient * -- 40 °CW Thermal Resistance, Junction-to-Ambient -- 62.5 °CW
Rev. A, April 2000
Page 2
FQB7N60 / FQI7N60
Electrical Characteristics

TC = 25°C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BV
BV / ∆T I
DSS
I
GSSF
I
GSSR
Drain-Source Breakdown Voltage
DSS
Breakdown Voltage Temperature
DSS
Coefficient
J
Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward
Gate-Body Leakage Current, Reverse
= 0 V, ID = 250 µA
V
GS
= 250 µA, Referenced to 25°C
I
D
V
= 600 V, VGS = 0 V
DS
V
= 480 V, TC = 125°C
DS
= 30 V, VDS = 0 V
V
GS
V
= -30 V, VDS = 0 V
GS
600 -- -- V
-- 0.67 -- V/°C
-- -- 10
-- -- 100
-- -- 100 nA
-- -- -100 nA
On Characteristics
V R
g
FS
GS(th)
DS(on)
Gate Threshold Voltage Static Drain-Source
On-Resistance Forward Transconductance
= VGS, ID = 250µ A
V
DS
= 10 V , ID = 3.7 A
V
GS
= 50 V, ID = 3.7 A
V
DS
(Note 4)
3.0 -- 5.0 V
-- 0.8 1.0
-- 6.4 -- S
Dynamic Characteristics
C
iss
C
oss
C
rss
Input Capacitance Output Capacitance -- 135 175 pF Reverse Transfer Capacitance -- 16 21 pF
= 25 V, VGS = 0 V,
V
DS
f = 1.0 MHz
-- 1100 1430 pF
Switching Characteristics
t
d(on)
t
r
t
d(off)
t
f
Q Q Q
g gs gd
Turn-On Delay Time Turn-On Rise Time -- 80 170 ns Turn-Off Delay Time -- 65 140 ns Turn-Off Fall Time -- 60 130 ns Total Gate Charge Gate-Source Charge -- 7 -- nC Gate-Drain Charge -- 14.5 -- nC
= 300 V, ID = 7.4 A,
V
DD
= 25
R
G
V
= 480 V, ID = 7.4 A,
DS
V
GS
= 10 V
(Note 4, 5)
(Note 4, 5)
-- 30 70 ns
-- 29 38 nC
µ
A
µ
A
Drain-Source Diode Characteristics and Maximum Ratings
I
S
I
SM
V
SD
t
rr
Q
rr
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 19.5mH, I
3. ISD  7.4A, di/dt  200A/µs, VDD  BV
4. Pulse Test : Pulse width 300µs, Duty cycle 2%
5. Essentially independent of operating temperature
©2000 Fairchild Semiconductor International
Maximum Continuous Drain-Source Diode Forward Current -- -- 7.4 A Maximum Pulsed Drain-Source Diode Forward Current -- -- 29.6 A
= 0 V, IS = 7.4 A
Drain-Source Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge -- 2.4 --
= 7.4A, VDD = 50V, RG = 25
AS
Ω,
Starting TJ = 25°C
Starting TJ = 25°C
DSS,
V
GS
= 0 V, IS = 7.4 A,
V
GS
/ dt = 100 A/µs
dI
F
(Note 4)
-- -- 1.4 V
-- 320 -- ns
µ
Rev. A, April 2000
C
Page 3
Typical Characteristics
V
GS
Top : 15.0 V
10.0 V
8.0 V
1
10
7.5 V
7.0 V
6.5 V
6.0 V Bottom : 5.5 V
0
FQB7N60 / FQI7N60
10
, Drain Current [A]
D
I
-1
10
-1
10
0
10
Notes :
1. 250s Pulse Test
= 25
2. T
C
1
10
VDS, Drain-Source Voltage [V]
1
10
0
10
, Drain Current [A]
D
I
-1
10
246810
150
25
VGS, Gate-Source Voltage [V]
Notes :
= 50V
1. V
-55
DS
2. 250s Pulse Test
Figure 2. Transfer CharacteristicsFigure 1. On-Region Char act er i stic s
2.5
2.0
VGS = 10V
VGS = 20V
],
1.5
[
1.0
DS(ON)
R
0.5
Drain-Source On-Resistance
0.0 0 5 10 15 20 25
ID, Drain Current [A]
Note : T
1
10
= 25
J
0
10
, Reverse Drain Current [A]
DR
I
-1
10
0.2 0.4 0.6 0.8 1.0 1.2
150
VSD, Source-Drain voltage [V]
25
Notes :
= 0V
1. V
GS
2. 250s Pulse Test
Figure 3. On-Resistance Variati on vs.
Drain Current and Gate Voltage
2000
1600
1200
800
Capacitance [pF]
400
0
-1
10
Figure 5. Capacitance Characteristics Figure 6. Gate Charge Ch a ra ct eristics
©2000 Fairchild Semiconductor International
C C C
C
iss
C
oss
C
rss
0
10
VDS, Drain-Source Voltage [V]
= Cgs + Cgd (Cds = shorted)
iss
= Cds + C
oss
gd
= C
rss
gd
Notes :
= 0 V
1. V
GS
2. f = 1 M H z
1
10
Figure 4. Body Diode Forward Voltage
Variation vs. Source Current
and Temperature
12
10
8
6
4
, Gate- Source Voltage [V]
2
GS
V
0
0 5 10 15 20 25 30 35
QG, Total Gate Charge [nC]
VDS = 120V
VDS = 300V
VDS = 480V
Note : I
= 7.4A
D
Rev. A, April 2000
Page 4
FQB7N60 / FQI7N60
Typical Characteristics
1.2
1.1
1.0
, (Normalized)
DSS
BV
0.9
Drain-Source Breakdown Voltage
0.8
-100 -50 0 50 100 150 200
TJ, Junction Temperature [oC]
Figure 7. Breakdown Voltage Variation
vs. Temperature
2
10
1
10
0
10
, Drain Current [A]
D
I
-1
10
0
10
VDS, Drain-Source Voltage [V]
Operation in This Area is Limited by R
Notes :
= 25 oC
1. T
C
= 150 oC
2. T
J
3. Single Pulse
1
10
DS(on)
(Continued)
Notes :
1. V
2. ID = 250 A
1 ms
10 ms
DC
2
10
= 0 V
GS
100 µs
3.0
2.5
2.0
1.5
, (Normalized)
1.0
DS(ON)
R
Drain-Source On-Resistance
0.5
0.0
-100 -50 0 50 100 150 200
1. V
2. I
Notes :
D
= 10 V
GS
= 3.7 A
TJ, Junction Temperature [oC]
Figure 8. On-Resistance Variation
vs. Temperature
8
6
3
10
4
, Drain Current [A]
2
D
I
0
25 50 75 100 125 150
TC, Case Temperature []
Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current
(t), Thermal R esponse
Z
©2000 Fairchild Semiconductor International
vs. Case Temperature
0
10
D=0.5
0.2
-1
0.1
10
0.05
0.02
JC
0.01
-2
10
-5
10
single pulse
-4
10
-3
10
-2
10
Notes :
1. Z
(t) = 0 .8 8 /W M a x .
JC
2. D u t y F a c t o r , D = t
3. TJM - TC = PDM * Z
P
DM
t
1
t
2
-1
10
10
1/t2
(t)
JC
0
1
10
t1, S q u a re W a v e P uls e D u ra tio n [s e c]
Figure 11. Transient Thermal Response Cur ve
Rev. A, April 2000
Page 5
Gate Charge Test Circuit & Waveform
V
V
GS
DS
DS
GS
10V
10V
Q
Q
g
g
Q
Q
gs
gs
Q
Q
gd
gd
Charge
Charge
Same Type
50K
50K
200nF
12V
12V
200nF
300nF
300nF
FQB7N60 / FQI7N60
V
V
GS
GS
3mA
3mA
Same Type
as DUT
as DUT
DUT
DUT
V
V
Resistive Switching Test Circuit & Waveforms
R
R
L
10V
10V
DUT
DUT
L
V
V
DD
DD
V
V
DS
DS
V
V
GS
GS
R
R
G
G
V
V
DS
DS
90%
90%
10%
10%
V
V
GS
GS
t
t
d(on)tr
d(on)tr
t
t
on
on
t
t
d(off)
d(off)
t
t
f
f
t
t
off
off
R
R
G
G
10V
10V
t
t
p
p
©2000 Fairchild Semiconductor International
Unclamped Inductive Switching Test Circuit & Waveforms
L
V
LL
V
DS
DS
BV
BV
DSS
V
V
DSS
I
I
DD
DD
AS
AS
I
IDI
D
D
V
V
DD
DD
DUT
DUT
1
1
1
1
----
----
----
----
E
E
=LI
E
=LI
=LI
AS
AS
AS
2
2
2
2
2
2
2
AS
AS
AS
(t)
(t)
I
I
D
D
t
t
p
p
BV
BV
DSS
DSS
--------------------
-------------------­BV
BV
DSS-VDD
DSS-VDD
Time
Time
V
(t)
V
(t)
DS
DS
Rev. A, April 2000
Page 6
Peak Diode Recovery dv / dt Test Circuit & Waveforms
+
DUT
DUT
I
I
SD
SD
Driver
Driver
R
R
G
G
V
V
GS
GS
+
V
V
DS
DS
_
_
L
LL
Same Type
Same Type
as DUT
as DUT
• dv/dt controlled by R
• dv/dt controlled by R
•ISDcontrolled by pulse period
•ISDcontrolled by pulse period
G
G
FQB7N60 / FQI7N60
V
V
DD
DD
V
V
GS
GS
( Driver )
( Driver )
I
I
SD
SD
( DUT )
( DUT )
V
V
DS
DS
( DUT )
( DUT )
Gate Pulse Width
Gate Pulse Width
Gate Pulse Width
--------------------------
--------------------------
--------------------------
D =
D =
D =
Gate Pulse Period
Gate Pulse Period
Gate Pulse Period
IFM, Body Diode Forward Current
IFM, Body Diode Forward Current
I
I
RM
RM
Body Diode Reverse Current
Body Diode Reverse Current
Body Diode Recoverydv/dt
Body Diode Recoverydv/dt
V
V
SD
SD
Body Diode
Body Diode
Forward Voltage Drop
Forward Voltage Drop
di/dt
di/dt
10V
10V
V
V
DD
DD
©2000 Fairchild Semiconductor International
Rev. A, April 2000
Page 7
Package Dimensions
D2PAK
4.50 ±0.20
1.30
+0.10 –0.05
(0.40)
9.90
±0.20
FQB7N60 / FQI7N60
1.20 ±0.20
0.10 ±0.15
2.40 ±0.20
0°~3°
+0.10
0.50
–0.05
2.54 ±0.30
1.40 ±0.20
1.27
±0.10
0.80 ±0.10
2.54 TYP 2.54 TYP
9.20 ±0.20
2.00 ±0.10
15.30 ±0.30
4.90 ±0.20
(0.75)
10.00 ±0.20 (8.00) (4.40)
©2000 Fairchild Semiconductor International
10.00 ±0.20
15.30 ±0.30
(1.75)
(2XR0.45)
(7.20)
9.20 ±0.20
4.90 ±0.20
0.80 ±0.10
Rev. A, April 2000
Page 8
Package Dimensions
FQB7N60 / FQI7N60
(Continued)
I2PAK
9.90 ±0.20
(0.40)
(1.46)
(0.94)
1.27 ±0.10 1.47 ±0.10
13.08 ±0.20
(45°)
0.80 ±0.10
2.54 TYP2.54 TYP
1.20 ±0.20
9.20 ±0.20
MAX 3.00
10.08 ±0.20 MAX13.40
0.50
4.50 ±0.20
+0.10 –0.05
+0.10
1.30
–0.05
2.40 ±0.20
©2000 Fairchild Semiconductor International
10.00 ±0.20
Rev. A, April 2000
Page 9
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™
2
E
CMOS™ FACT™ FACT Quiet Series™
®
FAST FASTr™ GTO™
HiSeC™ ISOPLANAR™ MICROWIRE™ POP™ PowerTrench
®
QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6
SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative or In
Design
Preliminary First Production This datasheet contains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
©2000 Fairchild Semiconductor International Rev. A, January 2000
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Loading...