Datasheet FDP8896 Datasheet (Fairchild)

Page 1
N
May 2008
FDP8896
FDP8896
N-Channel PowerTrench® MOSFET 30V, 92A, 5.9m
General Description
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r
and fast switching speed.
DS(ON)
Applications
• DC/DC converters
(FLANGE)
DRAIN
TO-220AB
FDP SERIES
MOSFET Maximum Ratings T
Symbol Parameter Ratings Units
V V
I
E P T
D
DSS GS
AS
D
, T
J
STG
Drain to Source Voltage 30 V Gate to Source Voltage ±20 V Drain Current Continuous (T Continuous (T Continuous (T
= 25oC, VGS = 10V) (Note 1)
C
= 25oC, VGS = 4.5V) (Note 1) 85 A
C
= 25oC, VGS = 10V, with R
amb
Pulsed Figure 4 A Single Pulse Avalanche Energy (Note 2) 74 mJ Power dissipation 80 W Derate above 25
o
C0.53W/
Operating and Storage Te mperature -55 to 175
SOURCE
DRAIN
GATE
= 25°C unless otherwise noted
C
Features
•r
•r
• High performance trench technology for extremely low
• Low gate charge
• High power and current handling capability
RoHS Compliant
= 62oC/W) 16 A
θJA
DS(ON)
DS(ON)
r
DS(ON)
= 5.9mΩ, V = 7.0mΩ, V
G
= 10V, ID = 35A
GS
= 4.5V, ID = 35A
GS
D
S
92 A
tmM
o
o
C
C
Thermal Characteristics
R
θJC
R
θJA
Thermal Resistance Junction to Case TO-220 1.88 Thermal Resistance Junction to Ambient TO-220 ( Note 3) 62
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDP8896 FDP8896 TO-220AB Tube N/A 50 units
©2008 Fairchild Semiconductor Corporation
o
C/W
o
C/W
FDP8896 Rev. A2
Page 2
FDP8896
Electrical Characteristics T
= 25°C unless otherwise noted
C
Symbol Parameter Tes t Cond itions Min Typ Max Units
Off Characteristics
B
VDSS
I
DSS
I
GSS
Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 30 - - V
V
= 24V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC - - 250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA 1.2 - 2.5 V
I
= 35A, VGS = 10V - 0.0050 0.0059
D
= 35A, VGS = 4.5V - 0.0060 0.0070
I
Drain to Source On Resistance
D
I
= 35A, VGS = 10V,
D
= 175oC
T
J
- 0.0078 0.0094
Dynamic Characteristics
C
ISS
C
OSS
C
RSS
R
G
Q
g(TOT)
Q
g(5)
Q
g(TH)
Q
gs
Q
gs2
Q
gd
Input Capacitance Output Capacitance - 490 - pF Reverse Transfer Capacitance - 300 - pF
= 15V, VGS = 0V,
V
DS
f = 1MHz
Gate Resistance VGS = 0.5V, f = 1MHz - 2.3 - Total Gate Charge at 10V VGS = 0V to 10V Total Gate Charge at 5V VGS = 0V to 5V - 25 36 nC
V
= 15V
Threshold Gate Charge VGS = 0V to 1V - 2.3 3.0 nC Gate to Source Gate Charge - 8 - nC Gate Charge Threshold to Plateau - 5.7 - nC
DD
= 35A
I
D
= 1.0mA
I
g
Gate to Drain “Miller” Charge - 9.5 - nC
- 2525 - pF
-4867nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 9 - ns Rise Time - 103 - ns Turn-Off Delay Time - 56 - ns Fall Time - 44 - n s Turn-Off Time - - 150 ns
(VGS = 10V)
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Notes: 1: Package current limitation is 80A. 2: Starting T 3: Pulse width = 100s. 4
Source to Drain Diode Voltage Reverse Recovery Time ISD = 35A, dISD/dt = 100A/µs- -27ns
Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/µs- -12nC
= 25°C, L = 36µH, IAS = 64A, VDD = 27V, VGS = 10V.
J
- - 168 ns
= 15V, ID = 35A
V
DD
= 4.5V, RGS = 6.2
V
GS
I
= 35A - - 1.25 V
SD
I
= 20A - - 1.0 V
SD
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 3
FDP8896
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULT IPL I ER
0
0 25 50 75 100 175
125
150
TC, CASE TEMPERATURE (oC)
Figure 1. Normali ze d Po we r Dis sip ation vs Case
Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
100
CURRENT LIMITED BY PACKAGE
80
VGS = 10V
60
VGS = 4.5V
40
, DRAIN CURRENT (A)
D
I
20
0
25 50 75 100 125 150
175
TC, CASE TEMPERATURE (oC)
Figure 2. Maximum Contin uous Drain Current vs
Case Temperature
P
DM
t
1
t
x R
θJC
+ T
2
C
1
10
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
θJC
10
1/t2
0
Figure 3. Normalized Maximum Transient Thermal Impedance
1000
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 4.5V
, PEAK CURRENT (A)
DM
I
100
50
-5
10
-4
10
-3
10
-2
10
-1
10
t, PUL SE WIDTH (s)
TC = 25oC FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 4
FDP8896
Typical Characteristics T
1000
100
10
OPERATION IN THIS
AREA MAY BE
, DRAIN CURRENT (A)
D
I
LIMITED BY r
1
SINGLE PULSE TJ = MAX RATED
= 25oC
T
C
0.1 110
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
= 25°C unless otherwise noted
C
Figure 5. Forward Bias Safe Operating Area
160
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
V
= 15V
DD
120
TJ = 25oC
80
, DRAIN CURRENT (A)
D
I
40
TJ = 175oC
0
1.5 2.0 2.5 3.0 3.5 VGS, GATE TO SOURCE VOLTAGE (V)
TJ = -55oC
10µs
100µs
1ms
10ms
DC
500
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
100
10
, AVALANCHE CURRENT (A)
AS
I
60
1
0.01 0.1 1 10 100
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Applica ti on Note s AN75 14 and AN75 15
Figure 6. Unclamped Inductive Switching
Capability
160
VGS = 10V
120
80
, DRAIN CURRENT (A)
D
I
40
0
4
0 0.25 0.5 0.75 1.0 1.25 1.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 4V
TC = 25oC
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 5V
VGS = 3V
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
14
ID = 35A
12
10
8
, DRAIN TO SOURCE
ON RESISTANCE (mΩ)
DS(ON)
r
6
ID = 1A
4
246810
V
, GATE TO SOURCE VOLTAGE (V)
GS
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
Figure 9. Drain to Source On Resis tanc e vs Ga te
Voltage and Drain Current
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
1.6
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.4
1.2
1.0
ON RESISTANCE
0.8
NORMALIZED DRAIN TO SOURCE
0.6
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 35A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
Page 5
FDP8896
Typical Characteristics T
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized Gate Thresho ld Voltage vs
Junction Temperature
5000
1000
C
= C
RSS
GD
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
C
ISS
C
OSS
= CGS + C
C
DS
+ C
GD
GD
30
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 T
, JUNCTION TEMPERATURE (oC)
J
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 15V
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 1020304050
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 35A I
= 16A
D
Figure 13. Capacitance vs Drain to Source
Voltage
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Figure 14. Gate Charge Waveforms for Constant
Gate Current
Page 6
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 1V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
Q
g(5)
V
GS
VGS = 5V
gd
FDP8896
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
10%
t
r
PULSE WIDTH
t
d(OFF)
90%
t
OFF
t
f
90%
10%
50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 7
PSPICE Electrical Model
.SUBCKT FDP8896 2 1 3 ; rev November 2003
FDP8896
Ca 12 8 2.3e-9 Cb 15 14 2.3e-9 Cin 6 8 2.3e-9
DPLCAP
10
Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 33 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
20
ESG
18 22
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
Lgate 1 9 5.5e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2.7e - 9
RLgate 1 9 55 RLdrain 2 5 10 RLsource 3 7 27
Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
CA
S1A
12
S1B
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 2.3e-3 Rgate 9 20 2.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 2e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}
15
CIN
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
8
DBREAK
11
+
17
EBREAK
IT
18
-
MWEAK
RSOURCE
RBREAK
17 18
RVTHRES
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
.MODEL DbodyMOD D (IS=4E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7 + CJO=8.8e-10 M=0.57 TT=1e-16 XTI=2.2) .MODEL Dbrea kM O D D ( R S=8e-2 TRS1=1e- 3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)
.MODEL MmedMOD NMOS (VTO=1.98 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.3 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.4 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.68 KP=0.05 IS=1e-30 N=10 T OX=1 L=1u W=1u RG=23 RS=0.1 T_ABS=25)
.MODEL RbreakMOD RES (TC1 =8.3e-4 TC2=-4e-7) .MODEL RdrainMOD RES (TC1=1e-3 TC2=8e-6) .MODEL RSLCMOD RES (TC1=9e -4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.4e-3 TC2=-8.8e-6) .MODEL RvtempMOD RES (TC1=- 2.6e-3 TC2=2e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2) .ENDS
Note: For further discussio n of the PSP ICE mode l, consul t A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Confere nce Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 8
SABER Electrical Model
rev November 2003 template FDP8896 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=4e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=2.2) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4) m..model mmedmod = (type=_n,vto=1.98,kp=10, is=1e-30, tox=1) m..model mstrong mod = (type=_n,vto=2.4,k p=350,is=1e-30, tox=1 ) m..model mweakmod = (type=_n,vto=1.68,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2) c.ca n12 n8 = 2.3e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 2.3e-9
dp.dbody n7 n5 = model= dbodymod dp.dbreak n5 n11 = model=dbreakmod
ESG
dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 33
spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
18 22
20
spe.evthres n6 n 21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 5.5e-9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2.7e-9
CA
S1A
12
S1B
res.rlgate n1 n9 = 55 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 27
m.mmed n16 n6 n8 n8 = model=mmed mod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7 res.rdrain n50 n16 = 2.3e-3, tc1=1e-3,tc2=8e-6 res.rgate n9 n20 = 2.3 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.4e-3,tc2=-8.8e- 6 res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
14
13
13
8
S2B
13
+
+
6
EGS EDS
8
-
-
15
CIN
CB
-
+
-
5
MSTRO
14
5 8
RSLC1
51
ISCL
50 RDRAIN
16
21
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
17 18
7
RVTEMP 19
-
+
22
RLDRAIN
LSOURCE
RLSOURCE
VBAT
LDRAIN
DBODY
DRAIN
2
SOURCE
3
FDP8896
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))
} }
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 9
FDP8896
PSPICE Thermal Model
REV 23 Novemb er 20 03 FDP8896T CTHERM1 TH 6 9e-4
CTHERM2 6 5 1e-3 CTHERM3 5 4 2e-3 CTHERM4 4 3 3e-3 CTHERM5 3 2 7e-3 CTHERM6 2 TL 8e-2
RTHERM1 TH 6 3.0e-2 RTHERM2 6 5 1.0e-1 RTHERM3 5 4 1.8e-1 RTHERM4 4 3 2.8e-1 RTHERM5 3 2 4.5e-1 RTHERM6 2 TL 4.6e-1
SABER Thermal Model
SABER thermal model FDP8896T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =9e-4 ctherm.ctherm2 6 5 =1e-3 ctherm.ctherm3 5 4 =2e-3 ctherm.ctherm4 4 3 =3e-3 ctherm.ctherm5 3 2 =7e-3 ctherm.ctherm6 2 tl =8e-2
rtherm.rtherm1 th 6 =3.0e-2 rtherm.rtherm2 6 5 =1.0e-1 rtherm.rtherm3 5 4 =1.8e-1 rtherm.rtherm4 4 3 =2.8e-1 rtherm.rtherm5 3 2 =4.5e-1 rtherm.rtherm6 2 tl =4.6e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
tl
CASE
©2008 Fairchild Semiconductor Corporation FDP8896 Rev. A2
Page 10
TRADEMARKS
®
tm
tm
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.
®
ACEx Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK
®
EfficentMax™ EZSWITCH™ *
Fairchild Fairchild Semiconductor FACT Quiet Series™ FACT FAST FastvCore™ FlashWriter
®
®
®
®
®
*
* EZSWITCH™ and FlashWriter
FPS™ F-PFS™
®
FRFET Global Power Resource Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC OPTOPLANAR
®
®
are trademarks of System General Corporation, used under license by Fairchild Semiconductor.
®
®
PDP-SPM™ Power-SPM™ PowerTrench
SM
Programmable Active Droop™ QFET
®
®
QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™
®
SPM STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™
®
The Power Franchise
TinyBoost™ TinyBuck™ TinyLogic
®
TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™
®
UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
®
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
in the labeling, can be reasonably expected to result in a significant injury of the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative or In Design
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data; supplementary data will be pub-
Preliminary First Production
lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production
Obsolete Not In Production
@2008 Fairchild Semiconductor Corporation FDP8896 Rev.A2
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
Rev. I34
Loading...