Datasheet FDB20AN06A0, FDP20AN06A0 Datasheet (Fairchild)

Page 1
查询FDB20AN06A0供应商查询FDB20AN06A0供应商
FDB20AN06A0 / FDP20AN06A0
N-Channel PowerTrench® MOSFET 60V, 45A, 20m
FDB20AN06A0 / FDP20AN06A0
June 2003
Features
•r
•Q
• Low Miller Charge
•Low Q
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82547
DRAIN
(FLANGE)
MOSFET Maximum Ratings T
= 17mΩ (Typ.), V
DS(ON)
(tot) = 15nC (Typ.), V
g
Body Diode
RR
= 10V, ID = 45A
GS
= 10V
GS
TO-2 20 AB
FDP SERIES
DRAIN
GATE
SOURCE
= 25°C unless otherwise noted
C
Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Systems
• DC-DC converters and Off-line UPS
• Distributed Power Architectures and VRMs
• Primary Switch for 12V and 24V systems
GATE
SOURCE
TO-2 63 AB
FDB SERIES
DRAIN
(FLANGE)
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Source Voltage 60 V
Gate to Source Voltage ±20 V
Drain Current
Continuous (T
I
D
Continuous (T
Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 32 A
C
= 25oC, VGS = 10V, R
amb
= 43oC/W) 9 A
θJA
45 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy ( Note 1) 50 mJ
Power dissipation 90 W
o
Derate above 25
C0.60W/
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
©2003 Fairchild Semiconductor Corporation
Thermal Resistance Junction to Case TO-220, TO-263 1.67
Thermal Resistance Junction to Ambient TO-220, TO-263 ( Note 2) 62
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
certification.
FDB20AN06A0 / FDP20AN06A0 Rev. B
o
C/W
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB20AN06A0 FDB20AN06A0 TO-263AB 330mm 24mm 800 units
FDP20AN06A0 FDP20AN06A0 TO-220AB Tube N/A 50 units
FDB20AN06A0 / FDP20AN06A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
B
I
DSS
I
GSS
VDSS
Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 60 - - V
V
= 50V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
= 45A, VGS = 10V - 0.017 0.020
I
Drain to Source On Resistance
D
I
= 45A, VGS = 10V,
D
T
= 175oC
J
- 0.039 0.047
Dynamic Characteristics
C
C
C
Q
Q
Q
Q
Q
ISS
OSS
RSS
g(TOT)
g(TH)
gs
gs2
gd
Input Capacitance
Output Capacitance - 185 - pF
Reverse Transfer Capacitance - 60 - pF
Total Gate Charge at 10V VGS = 0V to 10V
Threshold Gate Charge VGS = 0V to 2V - 2 2.6 nC
Gate to Source Gate Charge - 6 - nC
Gate Charge Threshold to Plateau - 4 - nC
Gate to Drain “Miller” Charge - 4.5 - nC
Switching Characteristics (V
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time
Turn-On Delay Time - 11 - ns
Rise Time - 98 - ns
Turn-Off Delay Time - 23 - ns
Fall Time - 33 - ns
Turn-Off Time - - 84 ns
GS
= 10V)
= 25V, VGS = 0V,
V
DS
f = 1MHz
V
= 30V, ID = 45A
DD
V
= 10V, RGS = 20
GS
V
DD
I
= 45A
D
I
= 1.0mA
g
= 30V
-950- pF
15 19 nC
--164ns
µA
Drain-Source Diode Characteristics
I
= 45A - - 1.25 V
V
SD
t
rr
Q
RR
Notes: 1: Starting TJ = 25°C, L = 80µH, IAS = 36A. 2: Pulse width = 100s.
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Source to Drain Diode Voltage
Reverse Recovery Time ISD = 45A, dISD/dt = 100A/µs- - 32ns
Reverse Recovered Charge ISD = 45A, dISD/dt = 100A/µs- - 25nC
SD
= 22A - - 1.0 V
I
SD
Page 3
FDB20AN06A0 / FDP20AN06A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PUL SE
-4
10
10
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Current vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t1/t PEAK TJ = PDM x Z
-1
10
θJC
10
0
x R
t
1
t
2
2
+ T
θJC
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
600
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
40
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 4
FDB20AN06A0 / FDP20AN06A0
Typical Characteristics T
1000
100
10
OPERATION IN THIS
AREA MAY BE
, DRAIN CURRENT (A)
D
I
LIMITED BY r
1
SINGLE PUL SE TJ = MAX RATED
TC = 25oC
0.1 110100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
= 25°C unless otherwise noted
C
10µs
100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
V
= 15V
DD
80
TJ = -55oC
60
TJ = 175oC
300
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
100
tAV = (L/R)ln[(IAS*R)/(1.3*R ATED BV
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
0.1 1 10
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Not es AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
100
VGS = 20V
80
60
VGS = 10V
VGS = 7V
40
TJ = 25oC
, DRAIN CURRENT (A)
D
I
20
0
456789
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
17.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
17.0
16.5
16.0
DRAIN TO SOURCE ON RESISTANCE(mΩ)
15.5
0 1020304050
ID, DRAIN CURRENT (A)
VGS = 10V
Figure 9. Drain to Source On Resistance vs Drain
Current
40
, DRAIN CURRENT (A)
D
I
20
0
0123
2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
VGS = 5V
VDS, DRAIN TO SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 6V
TC = 25oC
VGS = 10V, ID = 45A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 5
FDB20AN06A0 / FDP20AN06A0
Typical Characteristics T
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 - 40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
2000
1000
C
= C
RSS
GD
C
ISS
C
OSS
= CGS + C
C
DS
+ C
GD
GD
1.15 ID = 250µA
1.10
1.05
1.00
BREAKDOWN VOLTAGE
0.95
NORMALIZED DRAIN TO SOURCE
0.90
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 30V
8
6
C, CAPACITANCE (pF)
100
V
= 0V, f = 1MHz
GS
40
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Source
Voltage
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
60
03691215
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 45A ID = 9A
Figure 14. Gate Charge Waveforms for Constant
Gate Current
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 6
Test Circuits and Waveforms
V
DS
L
VARY tP TO OBTAIN
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDB20AN06A0 / FDP20AN06A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50%50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 7
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P application. Therefore the application’s ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and thermal resistance R
A
is never exceeded.
JM
serves as the basis for establishing the rating of the part.
TJMTA–()
P
-----------------------------=
DM
R
θ JA
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of P complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminar y application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.
DM
(oC/W)
θJA
(EQ. 1)
, in an
is
DM
60
C/W)
o
(
θJA
R
40
20
Figure 21. Thermal Resistance vs Mounting
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
1100.1
Pad Area
FDB20AN06A0 / FDP20AN06A0
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
------------- ------------- -----------+
26.51
=
R
θ JA
26.51
=
R
θ JA
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
0.262 Area+()
Area in Inches Squared
128
------------- ------------- --------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
Page 8
PSPICE Electrical Model
.SUBCKT FDP20AN06A0 2 1 3 ; rev April 2003 Ca 12 8 4.4e-10 Cb 15 14 4.4e-10 Cin 6 8 9.2e-10
Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 67.2 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1
Lgate 1 9 6.3e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2.5e-9
RLgate 1 9 63 RLdrain 2 5 10 RLsource 3 7 25
Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMO D Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1e-3 Rgate 9 20 4.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 10e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
EVTEMP
+
18 22
20
S1A
12
13814
S1B
EGS EDS
FDB20AN06A0 / FDP20AN06A0
17 18
7
+
RVTE MP
19
-
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
6
-
S2A
13
S2B
13
+
+
6 8
-
-
5
RSLC1
51
+
5
ESLC
51
­50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
MMED
8
DBREAK
11
+
EBREAK
-
MWEAK
RSOURCE
RBREAK
17 18
IT
RVTHRES
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*150),2.7))}
.MODEL DbodyMOD D (IS=3.8E-12 N=1.06 RS=4e-3 TRS1=2.4e-3 TRS2=1.1e-6 + CJO=6.8e-10 M=0.53 TT=2.3e-8 XTI=3.9) .MODEL DbreakMOD D (RS=1.8 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=2.7e-10 IS=1e-30 N=10 M=0.44)
.MODEL MmedMOD NMOS (VTO=3.8 KP=2 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=4.7 T_ABS=25) .MODEL MstroMOD NMOS (VTO=4.34 KP=35 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=3.27 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG =47 RS=0.1 T_ABS=25)
.MODEL RbreakMOD RES (TC1=9e-4 TC2=1e-7) .MODEL RdrainMOD RES (TC1=6e-3 TC2=8e-5) .MODEL RSLCMOD RES (TC1=1e-3 TC2=3.5e-5) .MODEL RsourceMOD RES (TC1=9e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-5.1e -3 TC2=-1.3e-5) .MODEL RvtempMOD RES (TC1=-3e-3 TC2=1e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8 VOFF=-5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-8) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-1.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-2) .ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 9
SABER Electrical Model
rev April 2003 template FDP20AN06A0 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=3.8e-12,nl=1.06,rs=4e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=6.8e-10,m=0.53,tt=2.3e-8,xti=3.9) dp..model dbreakmod = (rs=1.8,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=2.7e-10,isl=10e-30,nl=10,m=0.44) m..model mmedmod = (type=_n,vto=3.8,kp=2,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.34,kp=35,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.27,kp=0.03,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-2) c.ca n12 n8 = 4.4e-10 c.cb n15 n14 = 4.4e-10 c.cin n6 n8 = 9.2e-10
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod
ESG
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 67.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
18 22
20
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
S1A
12
l.lgate n1 n9 = 6.3e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2.5e-9
S1B
CA
res.rlgate n1 n9 = 63 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 25
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u ,temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u ,temp=m_temp
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
13814
13
S2B
13
+
+
6
EGS EDS
8
-
-
15
CIN
CB
-
+
-
5
MSTRO
14
5 8
RSLC1
51
ISCL
50
RDRAIN
16
21
8
MMED
8
DBREAK
11
MWEA K
EBREAK
+
17 18
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
7
RVTE MP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDB20AN06A0 / FDP20AN06A0
res.rbreak n17 n18 = 1, tc1=9e-4,tc2=1e-7 res.rdrain n50 n16 = 1e-3, tc1=6e-3,tc2=8e-5 res.rgate n9 n20 = 4.7 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=3.5e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 10e-3, tc1=9e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.1e-3,tc2=-1.3e-5 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=1e-7 sw_vcsp.s1a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 2.7)) } }
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
Page 10
FDB20AN06A0 / FDP20AN06A0
PSPICE Thermal Model
REV 23 April 2003
FDP20AN06A0T
CTHERM1 TH 6 1.8e-3 CTHERM2 6 5 8.0e-3 CTHERM3 5 4 9.0e-3 CTHERM4 4 3 1.1e-2 CTHERM5 3 2 1.2e-2 CTHERM6 2 TL 2.0e-2
RTHERM1 TH 6 3.0e-2 RTHERM2 6 5 1.0e-1 RTHERM3 5 4 1.4e-1 RTHERM4 4 3 2.3e-1 RTHERM5 3 2 4.1e-1 RTHERM6 2 TL 4.2e-1
SABER Thermal Model
SABER thermal model FDP20AN06A0T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1.8e-3 ctherm.ctherm2 6 5 =8.0e-3 ctherm.ctherm3 5 4 =9.0e-3 ctherm.ctherm4 4 3 =1.1e-2 ctherm.ctherm5 3 2 =1.2e-2 ctherm.ctherm6 2 tl =2.0e-2
rtherm.rtherm1 th 6 =3.0e-2 rtherm.rtherm2 6 5 =1.0e-1 rtherm.rtherm3 5 4 =1.4e-1 rtherm.rtherm4 4 3 =2.3e-1 rtherm.rtherm5 3 2 =4.1e-1 rtherm.rtherm6 2 tl =4.2e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHE RM6
tl
©2003 Fairchild Semiconductor Corporation FDB20AN06A0 / FDP20AN06A0 Rev. B
CTHERM6
CASE
Page 11
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOL T™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
I2C™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
QFET
QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TruTranslation™ UHC™ UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I3
Loading...