Datasheet FDP10AN06A0, FDB10AN06A0 Datasheet (Fairchild Semiconductor)

Page 1
FDB10AN06A0 / FDP10AN06A0
N-Channel PowerTrench® MOSFET 60V, 75A, 10.5m
FDB10AN06A0 / FDP10AN06A0
July 2002
Features
•r
•Q
• Low Miller Charge
• Low Qrr Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82560
= 9.5mΩ (Typ.), V
DS(ON)
(tot) = 28nC (Typ.), V
g
= 10V, ID = 75A
GS
= 10V
GS
Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Syste m s
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 12V and 24V systems
D
DRAIN
(FLANGE)
SOURCE
DRAIN
GA TE
TO-220AB
FDP SERIES
MOSFET Maximum Ratings T
= 25°C unless otherwise not ed
C
GATE
SOURCE
TO-263AB
FDB SERIES
DRAIN
(FLANGE)
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 60 V Gate to Source Voltage ±20 V Drain Curr e nt Continuous (T
I
D
Continuous (T
Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 54 A
C
= 25oC, VGS = 10V) with R
amb
= 43oC/W) 12 A
θJA
75 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 429 mJ Power dissipation 135 W
o
Derate above 25
C0.9W/
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
This product has been designed to meet the extreme test conditions an d environment dem anded by the au tomotive industry. For a
All Fairchild Semiconductor products are manufactu red, assembled and tested under ISO9000 and QS9000 quality systems
©2002 Fairchild Semiconductor Corporation
Thermal Resistance Junction t o Case TO-220, TO-263 1.11 Thermal Resistance Junction t o Ambient T O-220, TO-263 (Note 2) 62 Thermal Resistance Junction to Ambient TO-263, 1 in2 copper pad area 43
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be fou nd a t: http://ww w.f airc hilds e m i.co m /pr oduc ts/dis c rete/reliab ility/ind ex.html.
certification.
FDB10AN 06A0 / FDP 10AN06A0 Rev. A
o
C/W
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB10AN06A0 FDB10AN06A0 TO- 263AB 330mm 24mm 800 unit s FDP10AN06A0 FDP10AN06A0 TO- 220AB Tube N/A 50 unit s
FDB10AN06A0 / FDP10AN06A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Con ditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µA, VGS = 0V 60 - - V
V
= 50V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
I
= 75A, VGS = 10V - 0.0095 0.0105
D
I
= 37A, VGS = 6V - 0.017 0.027
Drain to S ou r c e On Re si st ance
D
= 75A, VGS = 10V,
I
D
T
= 175oC
J
- 0.021 0.023
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 340 - pF Reverse Transfer Capacitance - 110 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 3.5 4.6 nC Gate to Source Gate Charg e - 11.7 - nC Gate Charge Threshold to Plateau - 8.2 - nC
V
DD
I
= 75A
D
I
= 1.0m A
g
= 30V
Gate to Drain “Miller” Charge - 7.4 - nC
- 1840 - pF
28 37 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 8 - ns Rise Time - 128 - ns Turn-Off D elay Time - 27 - ns Fall Time - 36 - ns Turn-Off Time - - 94 ns
(VGS = 10V)
V
= 30V, ID = 75A
DD
V
= 10V, RGS = 10
GS
--206ns
Drain-Source Diode Characteristics
I
= 75A - - 1.2 5 V
V
SD
t
rr
Q
RR
Notes: 1: Starting T 2: Pulse Width = 100s
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Source to Drain Diode Voltage Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs- -27ns
Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs- -23nC
= 25°C, L = 8.58mH, IAS = 10A.
J
SD
I
= 40A - - 1.0 V
SD
Page 3
FDB10AN06A0 / FDP10AN06A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
80
60
40
, DRAIN CURRENT (A)
D
I
20
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
θJC
10
1/t2
x R
0
θJC
t
1
+ T
t
2
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
1000
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
, PEAK CURRENT (A)
DM
I
100
70
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 4
Typical Characteristics T
= 25°C unless otherwise noted
C
FDB10AN06A0 / FDP10AN06A0
500
100
OPERATION IN THIS
10
, DRAIN CURRENT (A)
D
1
I
0.1
AREA MAY BE
LIMITED BY r
SINGLE PULSE TJ = MAX RATED
T
= 25oC
C
110100
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
10µs 100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
500
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
150
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
125
V
= 15V
DD
100
75
TJ = 25oC
150
125
100
75
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
STARTING TJ = 150oC
0.1 1 10
tAV, TIME IN AVALANCHE (ms)
Capability
VGS = 10V
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
= 7V
V
GS
VGS = 6V
50
, DRAIN CURRENT (A)
D
I
TJ = 175oC
25
0
45678
TJ = -55oC
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
25
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
20
15
10
DRAIN TO SOURCE ON RESISTANCE(mΩ)
5
0 20406080
VGS = 6V
VGS = 10V
ID, DRAIN CURRENT (A)
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
50
, DRAIN CURRENT (A)
D
I
25
0
01234
2.5
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
TC = 25oC
V
= 5V
GS
VGS = 10V, ID = 75A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 5
FDB10AN06A0 / FDP10AN06A0
Typical Characteristics T
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
3000
C
= CGS + C
1000
ISS
C
C
+ C
OSS
DS
GD
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 T
, JUNCTION TEMPERATURE (oC)
J
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 30V
8
6
C
= C
RSS
GD
C, CAPACITANCE (pF)
100
V
= 0V, f = 1MHz
GS
50
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Sour ce
Voltage
4
, GATE TO SOURCE VOLTAGE (V)
2
GS
V
0
60
0 5 10 15 20 25 30
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 75A I
= 12A
D
Figure 14. Gat e Charge Waveforms for Constant
Gate Currents
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 6
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDB10AN06A0 / FDP10AN06A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50%50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 7
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maxi mum al lowab le de vice p ower di ssip ation, P application. Therefore the applications ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and th ermal res istance R
A
is never exceeded.
JM
serve s as the basis for establ ishing the rating of the part.
TJMTA–()
P
----------------- ------------=
DM
R
θJA
DM
(oC/W)
θJA
(EQ. 1)
, in an
60
C/W)
o
(
θJA
R
40
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
FDB10AN06A0 / FDP10AN06A0
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the parts current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and influenced by many factors:
DM
is
1. Mou nting pad area ont o which the device is attached and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transient thermal response of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designers preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positi on ed FR-4 bo ar d with 1oz copp er after 1 00 0 se c o n ds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary inf ormation for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manu ally utilizin g the normal ized maximum transient thermal impedance curve.
20
1100.1
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
Therma l resi stances correspondi ng to other copper are as can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
-------------------------------------+
26.51
=
R
θJA
26.51
=
R
θJA
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
0.262 Area+()
Area in Inches Squared
128
----------------------------------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
Page 8
PSPICE Electrical Model
.SUBCKT FDP 10AN06A0 2 1 3 ; rev July 2002 Ca 12 8 7e-10 Cb 15 14 7e-10 Cin 6 8 1.8e-9
Dbod y 7 5 DbodyMOD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 68.4 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 7e-9
Ldrain 2 5 1.0e -9 Lsou rce 3 7 3e-9
RLgate 1 9 70 RLdr ai n 2 5 10 RLsource 3 7 30
Mmed 16 6 8 8 M m edMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1.6e-3 Rgate 9 20 3.6 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 6e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
-
13
10
6 8
+
+
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
8
DBREAK
11
+
17
EBREAK
18
-
MWEAK
RSOURCE
RBREAK
17 18
IT
RVTHRES
7
+
RVTEMP 19
-
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDB10AN06A0 / FDP10AN06A0
Vbat 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ ABS(V(5,51)))*(PWR(V (5,51)/(1e-6*250),7))} .MODEL DbodyMOD D (IS=9E-12 N=1.06 RS=2.7e-3 TRS1=2.4e-3 TRS2=1.1e-6
+ CJO=1.25e-9 M=5.3e-1 TT=4e-9 XTI=3.9) .MODEL DbreakMOD D (RS= 2. 7e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=4.7e-10 IS=1e-30 N=10 M=0.44)
.MODEL MmedM OD NMOS (VTO= 3.6 KP =5.5 IS=1e-30 N=10 T OX=1 L=1u W=1u R G=3.6) .MODEL MstroMOD NMOS (VTO=4.4 KP=80 IS=1e- 30 N=10 TOX=1 L=1u W=1u) .MODEL Mwe akMOD NMOS (VTO=3.06 KP=0. 03 I S=1e-30 N=10 TOX =1 L=1u W=1u RG=36 RS=0.1)
.MODEL Rb reakMOD RES (TC1=9e-4 TC2=5e-7) .MODEL Rd rai nMOD RES (TC 1=2.5e-2 TC2=7.8e-5) .MODEL RSLCMOD RES (TC1=1e-3 TC2=3.5e-5) .MODEL RsourceMOD RES (TC 1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (T C1=-5.9e-3 TC 2=-1.3e-5) .MODEL RvtempMOD RES (T C1=-2.3e-3 TC 2=1.3e-6)
.MODEL S1AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 8 VOFF =-5 ) .MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 5 VOFF =-8 ) .MODEL S2AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 2 VOFF =-1 .5 ) .MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=- 2)
.ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Rec ords, 1991, writ ten by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 9
SABER Electrical Model
REV July 2002 template FDP 10AN06A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=9e-12,nl=1.06,rs=2.7e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.25e-9,m=5.3e-1,tt=4e-9,xti=3.9) dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e- 6) dp..model dplcapmod = (cjo=4.7e-10,isl=10e-30,nl=10,m=0.44) m..model mmedmod = (type=_n,vto=3.6,kp=5.5,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.4,kp=80,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.06,kp=0.03,is=1e-30, tox=1,rs=0.1) sw_vcsp.. mo del s1amod = (ron=1e- 5,roff=0.1,vo n=-8,voff=-5) sw_vcsp.. mo del s1bmod = (ron=1e- 5,roff=0.1,vo n=-5,voff=-8) sw_vcsp.. mo del s2amod = (ron=1e- 5,roff=0.1,vo n=-2,voff=-1.5) sw_vcsp.. mo del s2bmod = (ron=1e- 5,roff=0.1,vo n=-1.5,voff=-2) c.ca n12 n8 = 7e- 10 c.cb n15 n14 = 7e- 10 c.cin n6 n8 = 1.8e -9
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplca pm od
spe.ebreak n11 n7 n17 n18 = 68.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
20
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 7e -9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 3e-9
S1A
12
S1B
CA
res.rlgate n1 n9 = 70 res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 30
m.mmed n16 n6 n8 n8 = m odel=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=ms tr ongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakm od, l=1u, w=1u
ESG
18 22
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
14
13
13
8
S2B
13
+
+
6
EGS EDS
8
-
-
5
RSLC1
51
ISCL
8
MMED
DBREAK
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
50 RDRAIN
16
21
-
MSTRO
CIN
15
CB
14
+
5 8
-
RLDRAIN
+
17 18
LSOURCE
­7
RLSOURCE
RVTEMP 19
­VBAT
+
22
LDRAIN
DBODY
DRAIN
2
SOURCE
3
FDB10AN06A0 / FDP10AN06A0
res.rbreak n17 n18 = 1, tc1=9e-4,tc 2=5e-7 res.rdrain n50 n16 = 1.6e-3, tc1=2. 5e-2,tc2=7. 8e-5 res.rgate n9 n20 = 3.6 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=3.5e-5 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 6e-3, tc1=1e- 3, tc 2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.9e-3,tc2=-1.3e-5 res.rvtemp n18 n19 = 1, tc1=-2.3e-3,tc2=1.3e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model= s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5, n51)/(1e-9+abs(v(n5,n51) )))*((abs(v(n5,n51)*1e 6/250))** 7))
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
Page 10
FDB10AN06A0 / FDP10AN06A0
SPICE Thermal Model
REV 23 July 2002 FDP10AN06A0T
CTHERM1 TH 6 3.2e-3 CTHERM2 6 5 3. 3e-3 CTHERM3 5 4 3. 4e-3 CTHERM4 4 3 3. 5e-3 CTHERM5 3 2 6. 4e-3 CTHERM6 2 TL 1.9e-2
RTHERM1 TH 6 5.5e-4 RTHERM2 6 5 5. 0e-3 RTHERM3 5 4 4. 5e-2 RTHERM4 4 3 1. 5e-1 RTHERM5 3 2 3. 37e-1 RTHERM6 2 TL 3.5e-1
SABER Thermal Model
SABER thermal model FDP10A N06A0T template thermal_model th tl thermal_ c th , tl { ctherm.c th erm 1 th 6 =3.2e-3 ctherm.ctherm2 6 5 =3.3e-3 ctherm.ctherm3 5 4 =3.4e-3 ctherm.ctherm4 4 3 =3.5e-3 ctherm.ctherm5 3 2 =6.4e-3 ctherm.ctherm6 2 tl =1.9e-2
rtherm.rtherm1 th 6 =5.5e-4 rtherm.rt herm2 6 5 =5.0e-3 rtherm.rt herm3 5 4 =4.5e-2 rtherm.rt herm4 4 3 =1.5e-1 rtherm.rt herm5 3 2 =3.37e-1 rthe r m.rtherm6 2 tl =3.5 e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHERM6
tl
©2002 Fairchild Semiconductor Corporation FDB10AN06A0 / FDP10AN06A0 Rev. A
CTHERM6
CASE
Page 11
TRADEMARKS
The following are registe red and unr egistered trademarks Fairchild Semiconductor owns or is aut horized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx ActiveArray Bottomless CoolFET CROSSVOLT DOME EcoSPARK
2
E
CMOS
EnSigna
FACT FACT Quiet Series
®
FAST FASTr FRFET GlobalOptoisolator GTO HiSeC
2
I
C
Across the board. Around the world. The Power Franchise
ImpliedDisconnect ISOPLANAR LittleFET MicroFET MicroPak MICROWIRE MSX MSXPro OCX OCXPro OPTOLOGIC
®
OPTOPLANAR
PACMAN POP Power247 PowerTrench
®
QFET QS QT Optoelectronics Quiet Ser ies RapidConfigure RapidConnect SILENT SWITCHER SMART START
SPM Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation UHC UltraFET
®
VCX
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or I n
Design
Preliminary First Production This datasheet co ntains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later dat e. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the righ t to make chan ges at any time without notice in order to improve design.
that has been discontinued b y Fairchild semico nductor. The datasheet is printed for reference information only.
Rev. I
Loading...