Datasheet FDP047AN08A0 Datasheet (Fairchild Semiconductor)

Page 1
FDP047AN08A0
N-Channel UltraFET® Trench MOSFET 75V, 80A, 4.7m
FDP047AN08A0
April 2002
Features
•r
•Q
• Low Miller Charge
• Low Qrr Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82684
MOSFET Maximum Ratings T
= 4.0mΩ (Typ.), V
DS(ON)
(tot) = 92nC (Typ.), V
g
DRAIN
(FLANGE)
= 10V, ID = 80A
GS
= 10V
GS
TO-220AB
FDP SERIES
DRAIN
GATE
= 25°C unless otherwise noted
C
SOURCE
Applications
• 42V Automotiv e Load Control
• Starter / Alternator Systems
• Electronic Power Steering Systems
• Electronic Valve Train Systems
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 24V and 48V systems
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 75 V Gate to Source Voltage ±20 V Drain Curr e nt
I
D
Continuous (T Continuous (T
< 144oC, VGS = 10V)
C
= 25oC, VGS = 10V, with R
C
= 62oC/W) 15 A
θJA
80 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 600 mJ Power dissipation 310 W Derate above 25
o
C2.0W/
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
This product ha s been des igned to me et the e xtr eme test c ondit ions and envir onment deman ded by the automot ive indus t ry. For a
All Fairchild Semiconductor prod ucts are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
©2002 Fairchild Semiconductor Corporation
Thermal Resistance Junction to Case TO-220 0.48 Thermal Resistance Junction t o Ambient TO-220 (No te 2) 62
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
certification.
FDP047AN08A0 Rev. A
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDP047AN08A0 FDP047AN08A0 TO- 220AB Tube N/A 50 unit s
FDP047AN08A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltage ID = 250µA, VGS = 0V 75 - - V
V
= 60V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
I
= 80A, VGS = 10V - 0.0040 0.0047
D
I
= 37A, VGS = 6V - 0.0058 0.0087
Drain to S ou r c e On Re si st ance
D
I
= 80A, VGS = 10V,
D
T
= 175oC
J
- 0.0082 0.011
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 1000 - pF Reverse Transfer Capacitance - 240 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 11 17 nC Gate to Source Gate Charg e - 27 - nC Gate Charge Threshold to Plateau - 16 - nC
V
DD
I
= 80A
D
I
= 1.0m A
g
= 40V
Gate to Drain “Miller” Charge - 21 - nC
- 6600 - pF
92 138 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 18 - ns Rise Time - 88 - ns Turn-Off Delay Time - 40 - ns Fall Time - 45 - ns Turn-Off Time - - 128 ns
(VGS = 10V)
= 40V, ID = 80A
V
DD
V
= 10V, RGS = 3.3
GS
--160ns
Drain-Source Diode Characteristics
I
= 80A - - 1.25 V
V
SD
t
rr
Q
RR
Notes: 1: Starting T 2: Pulse Width = 100s
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Source to Drain Diode V oltage Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs- -53ns
Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs- -54nC
= 25°C, L = 0.48mH, IAS = 50A.
J
SD
= 40A - - 1.0 V
I
SD
Page 3
FDP047AN08A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
200
160
120
80
, DRAIN CURRENT (A)
D
I
40
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
CURRENT LIMITED BY PACKAGE
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
θJC
10
1/t2
0
x R
θJC
t
+ T
1
t
2
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
2000
1000
VGS = 10V
, PEAK CURRENT (A)
DM
I
100
50
10
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
-5
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Page 4
FDP047AN08A0
Typical Characteristics T
2000
1000
100
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
, DRAIN CURRENT (A)
D
I
1
SINGLE PULSE
TJ = MAX RATED T
= 25oC
C
0.1
0.1 1 10 100
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
= 25°C unless otherwise noted
C
10µs
100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
150
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 15V
DD
120
90
TJ = 175oC
60
, DRAIN CURRENT (A) I
TJ = 25oC
D
30
0
4.0 4.5 5.0 5.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V)
TJ = -55oC
500
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
100
10
, AVALANCHE CURRENT (A)
AS
STARTING TJ = 150oC
I
1
.01 0.1 1 10 100
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
150
VGS = 10V VGS = 7V
120
VGS = 6V
90
60
, DRAIN CURRENT (A)
D
I
30
0
0 0.5 1.0 1.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 5V
TC = 25oC
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
7
VGS = 6V
6
5
VGS = 10V
4
DRAIN TO SOURCE ON RESISTANCE(mΩ)
3
0 20406080
I
, DRAIN CURRENT (A)
D
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 80A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
Page 5
FDP047AN08A0
Typical Characteristics T
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEM PERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
10000
C
= CGS + C
C
C
+ C
OSS
DS
GD
1000
C
= C
RSS
GD
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
ISS
GD
75
1.15 ID = 250µA
1.10
1.05
1.00
BREAKDOWN VOLTAGE
0.95
NORMALIZED DRAIN TO SOURCE
0.90
-80 -40 0 40 80 120 160 200 T
, JUNCTION TEMPERATURE (oC)
J
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 40V
8
6
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 255075100
Qg, GATE CHARGE (nC)
DESCENDING ORDER:
ID = 80A
= 10A
I
D
Figure 13. Capacitance vs Drain to Sour ce
Voltage
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Figure 14. Gat e Charge Waveforms for Constant
Gate Currents
Page 6
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
0
I
g(REF)
GS
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDP047AN08A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50%50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Page 7
PSPICE Electrical Model
.SUBCKT FDP047AN08A0 2 1 3 ; rev March 2002 CA 12 8 1.5e -9 CB 15 14 1.5e-9 CIN 6 8 6.4e-9
DBODY 7 5 DBODYMO D DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 82.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1e- 9
LGATE 1 9 4.81e- 9 LSOURCE 3 7 4.63e-9
MMED 16 6 8 8 MMEDM OD MSTR O 16 6 8 8 M S T ROMOD MWEAK 16 21 8 8 MWE AKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9e-4 RGAT E 9 20 1.36 RLDRAIN 2 5 10 RLGATE 1 9 48.1 RLSOUR CE 3 7 4 6.3 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.3e-3 RVTHRES 22 8 RVTHRE SMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
20
12
CA
10
­6
ESG
8
+
EVTEMP +
-
18 22
S1A
13
14
8
13
S1B
13
+
+
EGS EDS
-
-
DPLCAP
RSLC2
EVTHRES
+
6
S2A
S2B
6 8
FDP047AN08A0
17 18
7
+
RVTEMP 19
-
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
5
RSLC1
51
+
5
ESLC
51
­50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
MMED
8
DBREAK
11
+
EBREAK
-
MWEAK
RSOURCE
RBREAK
17 18
IT
RVTHRES
DRAIN
2
SOURCE
3
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))} .MODEL DBODYMOD D (IS = 2.4e-11 N = 1.04 RS = 1.76e-3 TRS1 = 2.7e-3 TRS2 = 2e-7 XTI=3.9 CJO = 4.35e-9 TT = 1e-8
M = 5.4e -1) .MODEL DBR EAKMOD D (RS = 1.5e-1 TRS1 = 1e- 3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 N = 10 M = 0.53) .MODEL MMEDMOD NMOS (VTO = 3.7 KP = 9 IS =1e-30 N = 10 TOX = 1 L = 1u W = 1u R G = 1.3 6) .MODEL MSTROMOD NMOS (VTO = 4.4 K P = 250 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 3.05 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36e1 RS = 0.1) .MODEL RBR EAKMOD RES (TC1 = 1.05e-3 T C2 = -9e-7) .MODEL RD RAINMOD RES (TC1 = 1.9e-2 TC2 = 4e-5) .MODEL RSLC M OD RES (TC1 = 1.3e- 3 TC2 = 1e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -6e-3 TC2 = -1.9e-5) .MODEL RVT EMPMOD RES (T C1 = -2.4e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF= -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= -4.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.0)
.ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, wri t ten by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Page 8
SABER Electrical Model
REV March 2002 template FDP 047AN08A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2.4e-11, n1 = 1.04, rs = 1.76e-3, trs1 = 2.7e-3, trs2 = 2e-7, xti = 3.9, cjo = 4.35e-9, tt = 1e-8, m = 5.4e-1) dp..model dbreakmod = (rs = 1.5e-1, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 1.35e- 9, isl =10e-30, nl =10, m = 0.53) m..model mme dm od = (type=_n, vto = 3. 7, kp = 9, is =1e-30, tox=1 ) m..model mst rongmod = (type= _n, vt o = 4. 4, kp = 250, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 3.05, kp = 0.03 , is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -1.5) sw_vcsp.. mo del s1bmod = (ron =1e-5 , roff = 0.1, von = -1.5, voff = -4. 0) sw_vcsp.. mo del s 2am od = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5) sw_vcsp.. mo del s 2bm od = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
c.ca n12 n8 = 1.5e -9
10
c.cb n15 n14 = 1.5e-9 c.cin n6 n8 = 6.4e -9
RSLC2
dp.dbody n7 n5 = model=dbodym od dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplca pm od
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 4.81e-9
GATE
l.lsource n3 n7 = 4.63e-9
LGATE
1
RLGATE
RGATE
9
ESG
EVTEMP +
18 22
20
-
6 8
+
6
-
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, t c2 = -9e-7 res.rdrain n50 n16 = 9e-4, tc1 = 1.9e-2, tc2 = 4e-5 res.rgate n9 n20 = 1.36 res.rldrai n n2 n5 = 10 res.rlgate n1 n9 = 48.1 res.rlsource n3 n7 = 46.3 res.rslc1 n5 n51= 1e-6, tc1 = 1e -3, tc2 =1e-5 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 2.3e-3, tc1 = 1e-3, tc 2 =1e-6
12
CA
S1A
13
14
8
13
S1B
13
+
+
6
EGS EDS
8
-
-
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -6e-3, tc 2 = -1.9e-5
DPLCAP
EVTHRES
+
19
S2A
S2B
5
RSLC1
51
ISCL
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
RSOURCE
RBREAK
17 18
IT
RVTHRES
50 RDRAIN
16
21
-
8
MSTRO
CIN
15
CB
14
+
5 8
-
17 18
­7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDP047AN08A0
spe.ebreak n11 n7 n17 n18 = 82.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model =s2bmod
v.vbat n22 n19 = dc=1 equations {
i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250 ))** 10)) } }
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Page 9
FDP047AN08A0
SPICE Thermal Model
REV 23 March 2002 FDP047AN08A0T CTHERM1 t h 6 6.45e-3
CTHERM2 6 5 3e-2 CTHERM3 5 4 1. 4e-2 CTHERM4 4 3 1. 65e-2 CTHERM5 3 2 4. 85e-2 CTHERM6 2 t l 1 e-1
RTHERM1 t h 6 3.24e-3 RTHERM2 6 5 8. 08e-3 RTHERM3 5 4 2. 28e-2 RTHERM4 4 3 1e-1 RTHERM5 3 2 1. 1e-1 RTHERM6 2 t l 1 .4e-1
SABER Thermal Model
SABER therm al m odel F DP047AN08A0T template thermal_model th tl thermal_ c th , tl { ctherm.ctherm1 t h 6 = 6.45e-3 ctherm.ctherm2 6 5 = 3e-2 ctherm.ctherm3 5 4 = 1.4e-2 ctherm.cth erm4 4 3 = 1.65e-2 ctherm.cth erm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 1e-1
rtherm.rth e rm 1 th 6 = 3.24e-3 rtherm.rt herm2 6 5 = 8.08e-3 rtherm.rt herm3 5 4 = 2.28e-2 rtherm.rt herm4 4 3 = 1e- 1 rtherm.rt herm5 3 2 = 1.1e-1 rtherm.rt he rm6 2 tl = 1.4e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
CASE
tl
©2002 Fairchild Semiconductor Corporation FDP047AN08A0 Rev. A
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhausti ve list of all such trademarks.
ACEx Bottomless CoolFET CROSSVOLT DenseTrench DOME EcoSPARK
2
E
CMOS EnSigna FACT FACT Quiet Series
®
FAST
STAR*PO WER is us ed un der lic en se
FASTr FRFET GlobalOptoisolator GTO HiSeC
2
I
C ISOPLANAR LittleFET MicroFET MicroPak MICROWIRE OPTOLOGIC
®
OPTOPLANAR PACMAN POP Power247 PowerTrench
®
QFET QS QT Optoelectronics Quiet Series SILENT SWITCHE R SMART START SPM
STAR*POWER Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation UHC
®
UltraFET VCX
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR D ESIGN. FAIRCHILD DOES NOT ASSUME A NY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) supp or t or s us ta in l if e, or ( c ) w hos e fa il ure to pe rf or m when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasona bl y ex pe cted to cau se t he fa il u re of th e lif e su pp ort device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Inf or m ation Formati ve or In
Design
Preliminary First Production This datasheet contains preliminary data, and
No Identificat ion Needed Full Pro duction This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
This datasheet contains the design specifications for product development. Specifi cations may change in any manner without notice.
supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been disc ontinued by Fairchild se miconductor. The datasheet is printed f or refe rence information only.
FDP047AN08A0 Rev. H5
Loading...