Page 1
FDP038AN06A0 / FDI038AN06A0
N-Channel PowerTrench® MOSFET
60V, 80A, 3.8mΩ
FDP038AN06A0 / FDI038AN06A0
August 2002
Features
•r
•Q
• Low Miller Charge
•Low Q
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82584
(FLANGE)
MOSFET Maximum Ratings T
= 3.5mΩ (Typ.), V
DS(ON)
(tot) = 95nC (Typ.), V
g
Body Diode
RR
DRAIN
TO-220AB
FDP SERIES
= 10V, ID = 80A
GS
= 10V
GS
SOURCE
DRAIN
GATE
= 25°C unless otherwise noted
C
DRAIN
(FLANGE)
Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Syste m s
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 12V and 24V systems
SOURCE
TO-262AB
FDI SERIES
DRAIN
GATE
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 60 V
Gate to Source Voltage ±20 V
Drain Curr e nt
I
D
Continuous (T
Continuous (T
< 151oC, VGS = 10V)
C
= 25oC, VGS = 10V, with R
amb
= 62oC/W) 17 A
θ JA
80 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 625 mJ
Power dissipation 310 W
Derate above 25
o
C2 . 0 7 W /
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Charact eristics
R
θ JC
R
θ JA
This product has been designed to meet the extreme test conditions and environment demanded by the automotive
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality
©2002 Fairchild Semiconductor Corporation
Thermal Resistance Junction t o Case TO-220, TO-262 0.48
Thermal Resistance Junction t o Ambient TO-220, TO-262 (Note 2) 62
industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
systems certification.
FDP038AN06A0 / FDI038AN06A0 Rev. A1
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDP038AN06A0 FDP038AN06A0 TO-220AB Tube N/A 50 units
FDI038A N06A0 FDI038A N06A0 TO- 262AB Tube N/A 50 unit s
FDP038AN06A0 / FDI038AN06A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Con ditions Min Typ Max Units
Off Characteristics
B
I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Volt ag e ID = 250µ A, VGS = 0V 60 - - V
V
= 50V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -2 5 0
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2 - 4 V
I
= 80A, VGS = 10V - 0.0035 0.0038
D
I
= 40A, VGS = 6V - 0.0049 0.0074
Drain to S ou r c e On Re si st ance
D
= 80A, VGS = 10V,
I
D
T
= 175oC
J
- 0.0071 0.0078
Dynamic Characteristics
C
C
C
Q
Q
Q
Q
Q
ISS
OSS
RSS
g(TOT)
g(TH)
gs
gs2
gd
Input Capacitance
Output Capacitance - 1123 - pF
Reverse Transfer Capacitance - 367 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V
Threshold Gate Charge VGS = 0V to 2V - 12 15 nC
Gate to Source Gate Charg e - 30 - nC
Gate Charge Threshold to Plateau - 18 - nC
V
DD
I
= 80A
D
I
= 1.0m A
g
= 30V
Gate to Drain “Miller” Charge - 24 - nC
- 6400 - pF
95 124 nC
µA
Ω
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time
Turn-On Delay Time - 15 - ns
Rise Time - 93 - ns
Turn-Off D elay Time - 38 - ns
Fall Time - 13 - ns
Turn-Off Time - - 75 ns
(VGS = 10V)
V
= 30V, ID = 80A
DD
V
= 10V, RGS = 2.4Ω
GS
--1 6 3n s
Drain-Source Diode Characteristics
I
= 80A - - 1 .2 5 V
V
SD
t
rr
Q
RR
Notes:
1: Starting T
2: Pulse Width = 100s
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Source to Drain Diode Voltage
Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µ s- -3 8n s
Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µ s- -3 9n C
= 25°C, L = 0.255mH, IAS = 70A.
J
SD
I
= 40A - - 1.0 V
SD
Page 3
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics T
= 25° C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
02 55 07 51 0 0 1 7 5
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
250
200
150
100
, DRAIN CURRENT (A)
D
I
50
0
150
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
CURRENT LIMITED
BY PACKAGE
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES:
DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-1
10
1/t2
θ JC
0
10
x R
θ JC
t
+ T
1
t
2
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
3000
TRANSCONDUCTANCE
MAY LIMIT CURRENT
1000
IN THIS REGION
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
10
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 4
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics T
2000
1000
100
OPERATION IN THIS
AREA MAY BE
10
LIMITED BY r
, DRAIN CURRENT (A)
D
I
1
SINGLE PULSE
TJ = MAX R ATED
T
= 25oC
C
0.1
11 01 0 0
Figure 5. Forward Bias Safe Operating Area
160
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
V
DD
120
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
= 15V
= 25° C unless otherwise noted
C
10µs
100µs
1ms
10ms
DC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
100
STARTING TJ = 25oC
STARTING TJ = 150oC
10
, AVALANCHE CURRENT (A)
I
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
AS
If R ≠ 0
t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
1
0.01 0.1 1 10 100
tAV, TIME IN AVALANCHE (ms)
DSS
- VDD)
DSS
- VDD) +1]
Figure 6. Unclamped Inductive Switching
Capability
160
120
VGS = 20V
VGS = 6V
VGS = 10V
VGS = 5V
80
, DRAIN CURRENT (A)
D
I
40
0
3.0 3.5 4.0 4.5 5.0 5.5 6
TJ = 175oC
TJ = 25oC
TJ = -55oC
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
5
4
DRAIN TO SOURCE ON RESISTANCE(mΩ)
3
0 2 04 06 08 0
I
, DRAIN CURRENT (A)
D
VGS = 6V
VGS = 10V
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
80
, DRAIN CURRENT (A)
D
I
40
PULSE DURATION = 80µs
0
0 0.5 1.0 1.5
2.5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
DUTY CYCLE = 0.5% MAX
VDS, DRAIN TO SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (oC)
TC = 25oC
VGS = 10V, ID =80A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 5
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics T
1.4
1.2
1.0
0.8
0.6
NORMALIZED GATE
THRESHOLD VOLTAGE
0.4
0.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
= 25° C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
10000
C
= CGS + C
C
≅ C
+ C
OSS
DS
GD
1000
C, CAPACITANCE (pF)
C
= C
RSS
GD
V
= 0V, f = 1MHz
GS
100
0.1 1 10 60
VDS, DRAIN TO SOURCE VOLTAGE (V)
ISS
GD
1.2
ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200
T
, JUNCTION TEMPERATURE (oC)
J
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 30V
8
6
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 25 50 75 100
Qg, GATE CHARGE (nC)
DESCENDING ORDER:
ID = 80A
= 40A
I
D
Figure 13. Capacitance vs Drain to Sour ce
Voltage
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Figure 14. Gat e Charge Waveforms for Constant
Gate Current
Page 6
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01Ω
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDP038AN06A0 / FDI038AN06A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50% 50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 7
PSPICE Electrical Model
.SUBCKT FDP038AN06A0 2 1 3 ; rev July 04, 2002
Ca 12 8 1.5e-9
Cb 15 14 1.5e-9
Cin 6 8 6.1e-9
Dbod y 7 5 DbodyMOD
Dbreak 5 11 Db reakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 69.3
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
Lgat e 1 9 4.81e-9
Ldrain 2 5 1.0e -9
Lsource 3 7 4.63e-9
RLgate 1 9 48.1
RLdr ai n 2 5 10
RLsource 3 7 46.3
Mmed 16 6 8 8 M m edMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1e-4
Rgate 9 20 1.36
RSLC1 5 51 RSL CM OD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 2.8e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BM OD
S2a 6 15 14 13 S2AM OD
S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
13
10
6
8
+
+
RSLC2
6
S2A
14
13
S2B
6
8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
51
5
51
21
MSTRO
14
5
8
RSLC1
+
ESLC
50
RDRAIN
16
8
MMED
8
DBREAK
11
+
17
EBREAK
IT
18
-
MWEAK
RSOURCE
RBREAK
17 18
RVTHRES
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDP038AN06A0 / FDI038AN06A0
ESLC 51 50 VALUE = {(V(5,5 1)/ ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))}
.MODEL DbodyMOD D (IS=2 .4 E-11 N=1.04 RS=1.65e-3 TRS1=2.7e-3 TRS 2=2e-7
+ CJO=4.35e-9 M=5.4e-1 TT =1e-9 XTI=3.9)
.MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=- 8.9e-6)
.MODEL DplcapMOD D (CJO=1.7e-9 IS=1e-30 N=10 M=0.47)
.MODEL MmedMOD NMOS (VTO=3.3 KP=9 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.36 T_abs=25)
.MODEL Mstro M OD NMOS (VTO=4.00 K P=275 IS=1e-30 N=10 TOX=1 L=1u W=1u T_abs=25)
.MODEL Mwe akMOD NMOS (VT O=2.72 KP=0.03 IS=1e-30 N=10 TOX=1 L= 1u W=1u RG=13.6 RS=0.1 T_ab s=25)
.MODEL Rb reakMOD RES (T C1=9e-4 TC2 =-9e-7)
.MODEL Rd rai nMOD RES (TC1=4e-2 TC2=3e-4)
.MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-5)
.MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6)
.MODEL RvthresMOD RE S (T C1=-6.7e-3 TC2=-1.5e-5 )
.MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6)
.MODEL S1AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 4 VOFF =-1 .5 )
.MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=- 4)
.MODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1 VOFF =0.5)
.MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= 0 .5 VOFF= -1)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electroni cs Specialist Conference Records, 1991, written by Wi l liam J. Hepp and C. F rank
Wheatley.
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 8
SABER Electrical Model
rev July 4, 2002
template FDP038AN06A0 n2,n1,n3 = m_t em p
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=2.4e-11,nl=1.04,rs=1.65e-3,trs1=2.7e-3,trs2=2e-7,cjo=4.35e-9,m=5.4e-1,tt=1e-9,xti=3.9)
dp..model dbreakmod = (rs=1. 5e-1,trs1=1 e-3,trs2=-8. 9e-6)
dp..m odel dpl capmod = (cjo=1.7 e-9,isl= 10e-3 0,nl=10 , m = 0.47)
m..model mmedmod = (type=_n,vto=3.3,kp=9,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=4.00,kp=275,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=2.72,kp=0.03,is=1e-30, tox=1,rs=0.1)
sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0. 1,von=-4,vof f = -1.5)
sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0. 1,von=-1.5, vof f=-4)
sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0. 1,von=-1,voff=0.5)
sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0. 1,von=0.5,v of f=-1)
c.ca n12 n8 = 1.5e -9
c.cb n15 n14 = 1.5e-9
c.cin n6 n8 = 6.1e -9
dp.dbody n7 n5 = model=dbodym od
dp.dbreak n5 n11 = model=dbr eakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 69.3
GATE
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
LGATE
1
RLGATE
9
RGATE
ESG
EVTEMP
+
18
22
20
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
CA
S1A
12
S1B
i.it n8 n17 = 1
l.lgate n1 n9 = 4.81e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 4.63e-9
res.rlgate n1 n9 = 48.1
res.rldrai n n2 n5 = 10
res.rlsource n3 n7 = 46.3
m.mmed n16 n6 n8 n8 = m odel=mmedm od, temp=m_temp, l = 1u, w=1u
m.mstrong n16 n6 n8 n8 = model=m s trongmod, temp =m_temp, l=1u , w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, temp=m_temp, l=1u, w=1u
DPLCAP
10
RSLC2
6
8
EVTHRES
+
+
19
8
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
15
CIN
CB
-
+
5
8
-
5
RSLC1
51
50
RDRAIN
21
MSTRO
14
ISCL
16
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
17
18
7
RVTEMP
19
-
+
22
RLSOURCE
LDRAIN
RLDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
FDP038AN06A0 / FDI038AN06A0
res.rbreak n17 n18 = 1, tc1=9e-4, tc 2=-9e-7
res.rdrain n50 n16 = 1e-4, tc1=4e-2,tc2=3e -4
res.rgate n9 n20 = 1.36
res.rslc1 n5 n51 = 1e-6, tc1=1e -3,tc2=1e-5
res.rslc2 n5 n50 = 1e3
res.rsour ce n8 n7 = 2.8e-3, tc1 =5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-6. 7e-3,tc2=-1. 5e-5
res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6
sw_vcsp.s1 a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1 b n13 n12 n13 n8 = mode l =s1bmod
sw_vcsp.s2 a n6 n15 n14 n13 = mode l =s2amod
sw_vcsp.s2 b n13 n15 n14 n13 = mod el =s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n 5,n51)/(1e-9+abs(v(n5 ,n51))))*(( abs(v(n5,n 51)*1e6/250))** 10))
}
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 9
PSPICE Thermal Model
REV 23 July 4, 2002
FDP038AN06A0T
CTHERM1 TH 6 6.45e-3
CTHERM2 6 5 3e-2
CTHERM3 5 4 1. 4e-2
CTHERM4 4 3 1. 65e-2
CTHERM5 3 2 4. 85e-2
CTHERM6 2 TL 1e-1
RTHERM1 TH 6 3.24e-3
RTHERM2 6 5 8. 08e-3
RTHERM3 5 4 2. 28e-2
RTHERM4 4 3 1e-1
RTHERM5 3 2 1. 1e-1
RTHERM6 2 TL 1.4e-1
SABER Thermal Model
RTHERM1
RTHERM2
FDP038AN06A0 / FDI038AN06A0
JUNCTION
th
CTHERM1
6
CTHERM2
5
SABER therm al m odel F DP035AN06A 0T
template thermal_model th tl
thermal_ c th , tl
{
ctherm.c th erm 1 th 6 =6.45e- 3
ctherm.ctherm2 6 5 =3e-2
ctherm.ctherm3 5 4 =1.4e-2
ctherm.ctherm4 4 3 =1.65e-2
ctherm.ctherm5 3 2 =4.85e-2
ctherm.ctherm6 2 tl =1e-1
rtherm.rth erm1 th 6 =3.24e-3
rtherm.rt herm2 6 5 =8.08e-3
rtherm.rt herm3 5 4 =2.28e-2
rtherm.rt he rm4 4 3 =1e-1
rtherm.rt herm5 3 2 =1.1e-1
rthe r m .rther m 6 2 tl =1.4e- 1
}
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
©2002 Fairchild Semiconductor Corporation FDP038AN06A0 / FDI038AN06A0 Rev. A1
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx
ActiveArray
Bottomless
CoolFET
CROSSVOL T
DOME
EcoSPARK
E2CMOS
EnSigna
TM
TM
FACT
FACT Quiet Series
â
FAST
FASTr
FRFET
GlobalOptoisolator
GTO
HiSeC
I2C
Across the board. Around the world.
The Power Franchise
Programmable Active Droop
ImpliedDisconnect
ISOPLANAR
LittleFET
MicroFET
MicroPak
MICROWIRE
MSX
MSXPro
OCX
OCXPro
OPTOLOGIC
â
OPTOPLANAR
PACMAN
POP
Power247
PowerTrench
â
QFET
QS
QT Optoelectronics
Quiet Series
RapidConfigure
RapidConnect
SILENT SWITCHER
SMART START
SPM
Stealth
SuperSOT-3
SuperSOT-6
SuperSOT-8
SyncFET
TinyLogic
TruTranslation
UHC
UltraFET
â
VCX
â
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or
In Design
First Production
Full Production
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I1