Page 1
查询FDH038AN08A1供应商查询FDH038AN08A1供应商
FDH038AN08A1
N-Channel PowerTrench® MOSFET
75V, 80A, 3.8mΩ
FDH038AN08A1
February 2003
Features
•r
•Q
• Internal Gate Resistor, Rg = 20Ω (Typ.)
• Low Miller Charge
•Low Q
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82690
MOSFET Maximum Ra tings T
= 3.5mΩ (Typ.), V
DS(ON)
(tot) = 125nC (Typ.), V
g
Body Diode
RR
= 10V, ID = 80A
GS
= 10V
GS
SOURCE
DRAIN
TO-247
= 25°C unless otherwise noted
C
GATE
Applications
• 42V Automotiv e Load Control
• Starter / Alternator Systems
• Electronic Power Steering Systems
• Elec tr on ic Valve Train Sys tems
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 24V and 48V systems
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 75 V
Gate to Source Voltage ±20 V
Drain Curr e nt
I
D
Continuous (T
Continuous (T
< 158oC, VGS = 10V)
C
= 25oC, VGS = 10V, with R
A
= 30oC/W) 22 A
θ JA
80 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse A valanch e Energy (Note 1) 1.17 J
Power dissipation 450 W
o
Derate above 25
C3 . 0 W /
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θ JC
R
θ JA
This product ha s been des igned to me et the e xtr eme test c ondit ions and envir onment deman ded by the automot ive indus t ry. For a
All Fairchild Semiconductor prod ucts are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
©2003 Fairchild Semiconductor Corporation
Thermal Resistance Junction t o Case TO-247 0.33
Thermal Resistance Junction to Ambient T O-247 30
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
certification.
FDH038AN08A1 Rev A
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDH038 AN08A1 FDH038 AN08A1 TO-247 Tube N/A 30 unit s
FDH038AN08A1
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
B
I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µ A, VGS = 0V 75 - - V
V
= 60V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -2 5 0
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2 - 4 V
= 80A, VGS = 10V - 0.0035 0.0038
I
D
I
= 40A, VGS = 6V - 0.0047 0.0071
Drain to S ou r c e On Re si st ance
D
I
= 80A, VGS = 10V,
D
T
= 175oC
J
- 0.0074 0.008
Dynamic Characteristics
C
C
C
Q
Q
Q
Q
Q
ISS
OSS
RSS
g(TOT)
g(TH)
gs
gs2
gd
Input Capacitance
Output Capacitance - 1320 - pF
Reverse Transfer Capacitance - 340 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V
Threshold Gate Charge VGS = 0V to 2V - 17 22 nC
Gate to Source Gate Charg e - 57 - nC
Gate Charge Threshold to Plateau - 42 - nC
V
DD
I
= 80A
D
I
= 1.0m A
g
= 40V
Gate to Drain “Miller” Charge - 30 - nC
- 8665 - pF
125 160 nC
µA
Ω
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time
Turn-On Delay Time - 88 - ns
Rise Time - 141 - ns
Turn-Off D elay Time - 23 2 - ns
Fall Time - 126 - ns
Turn-Off Time - - 530 ns
(VGS = 10V)
V
= 40V, ID = 80A
DD
V
= 10V, RGS = 2.4Ω
GS
--3 4 5n s
Drain-Source Diode Characteristics
I
= 80A - - 1.2 5 V
V
SD
t
rr
Q
RR
Notes:
1: Starting T J = 25°C, L = 0.65mH, IAS = 60A.
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Source to Drain Diode Voltage
Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µ s- -5 0n s
Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µ s- -6 5n C
SD
= 40A - - 1.0 V
I
SD
Page 3
FDH038AN08A1
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
02 55 07 51 0 0 1 7 5
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
1
0.5
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
-5
SINGLE PULSE
-4
10
0.01
10
280
240
200
160
120
80
, DRAIN CURRENT (A)
D
I
40
V
GS
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
10
t, RECTANGULAR PULSE DURATION (s)
-2
10
= 10V
TC, CASE TEMPERATURE (oC)
Case Temperature
NOTES:
DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-1
10
CURRENT LIMITED
BY PACKAGE
R
θ JA
P
DM
2
x R
θJC
θJC
0
10
=30oC/W
t
1
t
2
+ T
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
3000
TRANSCONDUCTANCE
MAY LIMIT CURRENT
1000
IN THIS REGION
VGS = 10V
, PEAK CURRENT (A)
DM
I
100
50
-5
10
-4
10
-3
10
t, PULSE WIDTH (s)
-2
10
-1
10
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
C
150
1
10
Figure 4. Peak Current Capability
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 4
FDH038AN08A1
Typical Characteristics T
2000
1000
100
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
, DRAIN CURRENT (A)
D
I
1
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
0.1
0.1 1 10 100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
= 25°C unless otherwise noted
C
10µs
100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
160
PULSE DURATION = 80ms
DUTY CYCLE = 0.5% MAX
V
= 15V
DD
120
TJ = 175oC
80
, DRAIN CURRENT (A)
D
40
I
0
TJ = 25oC
3.0 3.5 4.0 4.5 5.0 5.5 6.0
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = -55oC
500
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BV
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01 0.1 1 10 100
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
STARTING TJ = 150oC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
160
VGS = 10V
120
VGS = 6V
80
, DRAIN CURRENT (A)
D
40
I
0
0 0 .5 1.0 1.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 7V
VGS = 5V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
6
5
4
3
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
DRAIN TO SOURCE ON RESISTANCE(mΩ)
2
0 2 04 06 08 0
ID, DRAIN CURRENT (A)
VGS = 6V
VGS = 10V
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
2.5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 80A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
Page 5
FDH038AN08A1
Typical Characteristics T
1.4
1.2
1.0
0.8
0.6
NORMALIZED GATE
THRESHOLD VOLTAGE
0.4
0.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
20000
10000
C
≅ C
+ C
OSS
DS
GD
C
ISS
= CGS + C
GD
1.2
ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 40V
8
6
1000
C
= C
RSS
GD
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Sour ce
Voltage
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
75
0 2 55 07 51 0 01 2 5
Qg, GATE CHARGE (nC)
WAVEFORMS IN
DESCENDING ORDER:
ID = 80A
ID = 40A
Figure 14. Gat e Charge Waveforms for Constant
Gate Currents
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 6
Test Circuits and Waveforms
V
DS
L
VARY tP TO OBTAIN
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01Ω
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
V
DS
V
DD
L
V
I
g(REF)
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
Q
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
V
DS
gd
V
V
GS
FDH038AN08A1
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50% 50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 7
PSPICE Electrical Model
.SUBCKT FDH038AN08A1 2 1 3 ; rev January 2003
CA 12 8 1.0e -9
Cb 15 14 3.1e-9
Cin 6 8 8.22e-9
Dbod y 7 5 DbodyMOD
Dbreak 5 11 Db reakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 84.9
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
Lgat e 1 9 4.81e-9
Ldrain 2 5 1.0e -9
Lsource 3 7 4.63e-9
RLgate 1 9 48.1
RLdr ai n 2 5 10
RLsource 3 7 46.3
Mmed 16 6 8 8 M m edMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 2.0e-4
Rgate 9 20 20
RSLC1 5 51 RSL CM OD 1.0e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 2.6e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BM OD
S2a 6 15 14 13 S2AM OD
S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
18
22
20
S1A
12
13814
S1B
EGS EDS
FDH038AN08A1
17
18
-
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DPLCAP
10
RSLC2
6
8
EVTHRES
+
6
-
S2A
13
S2B
13
+
+
6
8
-
-
5
RSLC1
51
+
5
ESLC
51
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5
8
-
MMED
8
DBREAK
11
+
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
RVTHRES
ESLC 51 50 VALUE = {(V(5,51)/ ABS(V(5,51)))*(PWR(V (5,51)/(1e-6*300),10) )}
.MODEL DbodyMOD D (IS=2.4 E-11 N=1.02 RS= 1. 65e-3 TRS1=3.2e-3 TRS2=2.0e-7
+ CJO=6.0e-9 M= 5.6e-1 TT=2.3 8e-8 XTI=3.9)
.MODEL DbreakMOD D (RS= 1. 5e-1 TRS1=1.0e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=1.5e-9 IS=1.0e-30 N=10 M=0.47)
.MODEL MmedM OD NMOS (VTO= 3.2 KP =1.5 IS=1.0e-30 N=10 TOX=1 L=1u W=1u RG=20)
.MODEL Mstro M OD NMOS (VTO=3.95 KP=235 IS=1.0e-30 N=10 TOX=1 L=1u W=1u)
.MODEL Mwe akMOD NMOS (VTO=2.73 KP=0.02 IS=1e-30 N=10 TO X = 1 L=1u W=1u RG=200 RS=.01)
.MODEL Rb reakMOD RES (T C1=1.05e-3 TC 2=-9.0e-7)
.MODEL Rd rai nMOD RES (TC 1=1.8e-2 TC2=2.2e-4)
.MODEL RSLCMOD RES (TC1=2.0e-3 TC2=1.0e-5)
.MODEL RsourceMOD RES (TC 1=5.0e-3 TC2=1 .0e-6)
.MODEL RvthresMOD RES (T C1=-4.2e-3 TC 2=-1.8e-5)
.MODEL RvtempMOD RES (TC1=-4.5e-3 TC 2=2.0e-6)
.MODEL S1AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 4 VOFF =-1 .5 )
.MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=- 4)
.MODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 0.5 VO FF=0.5)
.MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= 0 .5 VOFF= -0.5)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. FrankWheatley.
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 8
SABER Electrical Model
REV January 2003
template FDH 038AN08A1 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=2.4e-11,nl=1.02,rs=1.65e-3,trs1=3.2e-3,trs2=2.0e-7,cjo=6.0e-9,m=5.6e-1,tt=2.38e-8,xti=3.9)
dp..model dbreakmod = (rs=1.5e-1,trs1=1.0 e-3,trs2=-8.9e-6)
dp..m odel dpl capmod = (cjo=1.5 e-9,isl= 10e-3 0,nl=10 , m = 0.47)
m..model mmedmod = (type=_n,vto=3.2,kp=1.5,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=3.95,kp=235,is=1.0e-30, tox=1)
m..model mweakmod = (type=_n,vto=2.73,kp=0.02,is=1.0e-30, tox=1,rs=0.1)
sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0.1, von=-4,voff=-1.5)
sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0.1, von=-1.5,voff= -4)
sw_vcsp.. mo del s2amod = (ron=1e- 5,roff=0.1,vo n=-0.5,voff=0. 5)
sw_vcsp.. mo del s2bmod = (ron=1e- 5,roff=0.1,vo n=0.5,voff=-0. 5)
c.ca n12 n8 = 1.0e -9
c.cb n15 n14 = 3.1e-9
c.cin n6 n8 = 8.22 e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplca pm od
spe.ebreak n11 n7 n17 n18 = 84.9
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
GATE
1
LGATE
9
RLGATE
RGATE
ESG
EVTEMP
+
18
22
20
l.lgate n1 n9 = 4.81e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 4.63e-9
res.rlgate n1 n9 = 48.1
res.rldrai n n2 n5 = 10
res.rlsource n3 n7 = 46.3
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l= 1u, w=1u
m.mstrong n16 n6 n8 n8 = model=ms tr ongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakm od, l=1u, w=1u
12
CA
S1A
S1B
EGS EDS
res.rbreak n17 n18 = 1, tc1=1.05e -3, tc2=-9.0e-7
res.rdrain n50 n16 = 2.0e-4, tc1=1.8e-2,tc2=2.2e-4
res.rgate n9 n20 = 20
res.rslc1 n5 n51 = 1e-6, tc1=2.0e-3,tc2=1.0e-5
res.rslc2 n5 n50 = 1.0e3
res.rsour ce n8 n7 = 2.6e-3, tc1=5.0e-3,tc2=1.0e-6
res.rvthres n22 n8 = 1, tc1=-4.2e-3,tc2=-1.8e-5
res.rvtemp n18 n19 = 1, tc1=-4.5e-3,tc2=2.0e-6
sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod
sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod
sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod
sw_vcsp.s2 b n13 n15 n14 n13 = model =s2bmod
10
-
6
8
+
-
13814
13
+
+
-
-
DPLCAP
RSLC2
EVTHRES
6
S2A
13
S2B
6
8
5
RSLC1
51
ISCL
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
RSOURCE
RBREAK
17 18
IT
RVTHRES
50
RDRAIN
16
+
21
-
19
8
MSTRO
CIN
15
CB
14
+
5
8
-
17
18
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDH038AN08A1
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5, n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/300))** 10))
}
}
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 9
FDH038AN08A1
SPICE Thermal Model
REV 23 January 2003
FDH038AN08A1T
CTHERM1 TH 6 5.5e-3
CTHERM2 6 5 6. 0e-3
CTHERM3 5 4 7. 4e-3
CTHERM4 4 3 7. 65e-3
CTHERM5 3 2 5. 85e-2
CTHERM6 2 TL 6.0e-1
RTHERM1 TH 6 9.0e-3
RTHERM2 6 5 2. 08e-2
RTHERM3 5 4 2. 28e-2
RTHERM4 4 3 7. 0e-2
RTHERM5 3 2 7. 5e-2
RTHERM6 2 TL 8.5e-2
SABER Thermal Model
SABER therm a l model FDH038A N08A1T
template thermal_model th tl
thermal_ c th , tl
{
ctherm.c th erm 1 th 6 =5.5e-3
ctherm.ctherm2 6 5 =6.0e-3
ctherm.ctherm3 5 4 =7.4e-3
ctherm.ctherm4 4 3 =7.65e-3
ctherm.ctherm5 3 2 =5.85e-2
ctherm.ctherm6 2 tl =6.0e-1
rtherm.rtherm1 th 6 =9.0e-3
rtherm.rt herm2 6 5 =2.08e-2
rtherm.rt herm3 5 4 =2.28e-2
rtherm.rt herm4 4 3 =7.0e-2
rtherm.rt herm5 3 2 =7.5e-2
rthe r m.rtherm6 2 tl =8.5 e-2
}
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
tl
CASE
©2003 Fairchild Semiconductor Corporation FDH038AN08A1 Rev. A
Page 10
TRADEMARKS
The following are registe red and unr egistered trademarks Fairchild Semiconductor owns or is aut horized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
2
E
CMOS™
EnSigna™
Across the board. Around the world.™
The Power Fr anchise™
Programma ble Active Droop™
FACT™
FACT Quiet Series™
®
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
2
I
C™
ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC
®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
®
QFET™
QS™
QT Optoelectronics™
Quiet Ser ies™
RapidConfigure™
RapidConnect™
SILENT SWITCHER
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic
TruTranslation™
UHC™
UltraFET
®
VCX™
®
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A c r it ic al c om ponent i s an y c om ponent o f a life s u pp or t
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or I n
Design
Preliminary First Production This datasheet co ntains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
supple m entary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
Semiconductor reserves the righ t to make chan ges at
any time without notice in order to improve design.
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I2