Datasheet CA3028AM96, CA3028AE, CA3028A Datasheet (Harris Semiconductor)

Page 1
Semiconductor
CA3028A
OBSOLETE PRODUCT
[ /Title (CA30 28A) /Sub­ject (Dif­feren­tial/Ca scode Ampli­fier for Com­mer­cial and Indus­trial Equip­ment from DC to 120M Hz) /Autho r () /Key­words (Har­ris Semi-
NO RECOMMENDED REPLACEMENT
Call Central Applications 1-800-442-7747
or email: centapp@harris.com
Differential/Cascode Amplifier for Commercial and Industrial Equipment from DC to 120MHz
The CA3028A is a differential/cascodeamplifierdesignedfor use in communications and industrial equipment operating at frequencies from DC to 120MHz.
Part Number Information
PART NUMBER
(BRAND)
CA3028A -55 to 125 8 Pin Metal Can T8.C CA3028AE -55 to 125 8 Ld PDIP E8.3 CA3028AM96
(3028A)
TEMP.
RANGE (oC) PACKAGE
-55 to 125 8 Ld SOIC Tape and Reel
PKG.
NO.
M8.15
Pinouts
CA3028A
(PDIP, SOIC)
TOP VIEW
1 2 3 4
CA3028A
(METAL CAN)
TOP VIEW
8
1
2
3
4
8 7 6 5
7
6
5
January 1999 File Number 382.5
Features
• Controlled for Input Offset Voltage, Input Offset Current and Input Bias Current
• Balanced Differential Amplifier Configuration with Con­trolled Constant Current Source
• Single-Ended and Dual-Ended Operation
Applications
• RF and IF Amplifiers (Differential or Cascode)
• DC, Audio and Sense Amplifiers
• Converter in the Commercial FM Band
• Oscillator
• Mixer
• Limiter
• Related Literature
- Application Note AN5337 “Application of the CA3028
Integrated Circuit Amplifier in the HF and VHF Ranges.” This note covers characteristics of different operating modes, noise performance, mixer, limiter, and amplifier design considerations
Schematic Diagram
(Terminal Numbers Apply to All Packages)
8 6
1
R
1
7
5k
2
Q
1
R
2
2.8k
SUBSTRATE
AND CASE
Q
2
Q
3
R
3
500
3
5
4
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
© Harris Corporation 1999
Copyright
Page 2
CA3028A
Operating Conditions Thermal Information
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W)
Metal Can Package . . . . . . . . . . . . . . . 225 140
PDIP Package . . . . . . . . . . . . . . . . . . . 155 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 185 N/A
Maximum Junction Temperature (Metal Can Package). . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Absolute Maximum Voltage Ratings T
The following chart gives the range of voltages which can be applied to the terminalslisted horizontally with respect to the terminals listed vertically. For example, the voltage range of the horizontal Terminal 4 with respect to Terminal 2 is -1V to +5V.
TERM
NO.12345678
1 0 to -15 0 to -15 0 to -15 +5 to -5 Note 3 Note 3 +20 to 0 1 0.6 0.1 2 +5 to -11 +5 to -1 +15 to 0 Note 3 +15 to 0 Note 3 2 4 0.1
3 (Note 2) +10 to 0 +15 to 0 +24 to 0 +15 to 0 +24 to 0 3 0.1 23
4 +15 to 0 Note 3 Note 3 Note 3 4 20 0.1 5 +20 to 0 Note 3 Note 3 5 0.6 0.1 6 Note 3 Note 3 6 20 0.1 7 Note 3 7 4 0.1 8 8 20 0.1
NOTES:
2. Terminal No. 3 is connected to the substrate and case.
3. Voltages are notnormally applied betweenthese terminals. Voltagesappearingbetween theseterminals will be safe, if the specified voltage limits between all other terminals are not exceeded.
Electrical Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT
= 25oC
A
= 25oC
A
Absolute Maximum
Current Ratings
TERM
NO.
I
IN
mA
I
OUT
mA
DC CHARACTERISTICS
Input Bias Current (Figures 1, 10) I
Quiescent Operating Current (Figures 1,11, 12) I6, I
AGC Bias Current (Into Constant Current Source Terminal 7) (Figures 2, 13)
Input Current (Terminal 7) I
Power Dissipation (Figures 1, 14) P
I
2
VCC = 6V, VEE = -6V - 16.6 70 µA
I
VCC = 12V, VEE = -12V - 36 106 µA VCC = 6V, VEE = -6V 0.8 1.25 2.0 mA
8
VCC = 12V, VEE = -12V 2.0 3.3 5.0 mA VCC = 12V, V
7
VCC = 12V, V VCC = 6V, VEE = -6V 0.5 0.85 1.0 mA
7
VCC = 12V, VEE = -12V 1.0 1.65 2.1 mA VCC = 6V, VEE = -6V 24 36 54 mW
T
VCC = 12V, VEE = -12V 120 175 260 mW
= 9V - 1.28 - mA
AGC
= 12V - 1.65 - mA
AGC
Page 3
CA3028A
Electrical Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT
DYNAMIC CHARACTERISTICS
Power Gain (Figures 3, 4, 5, 15, 17, 19) G
Noise Figure (Figures 3, 4, 5, 16, 18, 19) NF f = 100MHz, VCC = 9V Cascode - 7.2 9.0 dB
Input Admittance (Figures 20, 21) Y
Reverse Transfer Admittance (Figures 22, 23) Y
Forward Transfer Admittance (Figures 24, 25) Y
= 25oC (Continued)
A
f = 100MHz
P
VCC = 9V
f = 10.7MHz VCC = 9V
f = 10.7MHz, VCC = 9V Cascode - 0.6 +
11
f = 10.7MHz, VCC = 9V Cascode - 0.0003
12
f = 10.7MHz, VCC = 9V Cascode - 99- j18 - mS
21
Cascode 16 20 - dB Diff. Amp. 14 17 - dB Cascode 35 39 - dB Diff. Amp. 28 32 - dB
Diff. Amp. - 6.7 9.0 dB
j1.6
Diff. Amp. - 0.5 +
j0.5
- j0
Diff. Amp. - 0.01 -
j0.0002
Diff. Amp. - -37 +
j0.5
-mS
-mS
-mS
-mS
-mS
Output Admittance (Figures 26, 27) Y
Output Power (Untuned) (Figures 6, 28) P
AGC Range (Maximum Power Gain to Full Cutoff) (Figures 7, 29)
Voltage Gain (Figures 8, 9, 30, 31)
Peak-to-Peak Output Current I
AGC f = 10.7MHz, VCC = 9V Diff. Amp. - 62 - dB
f = 10.7MHz, VCC = 9V Cascode - 0 +
22
f = 10.7MHz, VCC = 9V Diff.Amp., 50
O
A f = 10.7MHz, VCC = 9V,
RL = 1k
P-P
f = 10.7MHz, eIN = 400mV, Diff. Amp.
-mS
j0.08
Diff. Amp. - 0.04 +
j0.23
- 5.7 - µW
Input-Output
Cascode - 40 - dB Diff. Amp. - 30 - dB VCC = 9V 2.0 4.0 7.0 mA VCC = 12V 3.5 6.0 10 mA
-mS
3
Page 4
Test Circuits
CA3028A
V
CC
+
I
6
-
6
8
1
-
I
1
+
NOTE: .
Power Dissipation I3V
ICUT
5
-
+
I
7
-
+
5
EEI6I8
3µF
+
I
8
-
3
+
I
3
-
I
7
V
+=
EE
+()V
3µF
CC
FIGURE 1. INPUT OFFSET CURRENT,INPUT BIAS CURRENT,
POWER DISSIPATION, AND QUIESCENT OPERATING CURRENT TEST CIRCUIT
C
1
50 SIGNAL
SOURCE
(NOTE 4) OR
NOISE DIODE
(NOTE 5)
470pF
L
1
7
2
ICUT
4
3
0.001µF
0.001µF
1k
L
2
5
6
8
1
2k
C
2
50 RF
VOLTMETER (NOTE 4) OR
NOISE AMP
(NOTE 5)
V
0.001 µF
CC
2k
1k
V
CC
5
6
ICUT
8
V
CC
1
3
7
I
7
5k
FIGURE2. AGCBIASCURRENTTESTCIRCUIT (DIFFERENTIAL
AMPLIFIER CONFIGURA TION)
V
C
1
50 SIGNAL
SOURCE
(NOTE 6) OR
NOISE DIODE
(NOTE 7)
L
1
8
1
ICUT
3
0.001µF
1k
7
6
5
2k
L
2
C
2
50 RF
VOLTMETER (NOTE 6) OR
NOISE AMP
(NOTE 7)
CC
f
C
(MHz)
(pF)
C
1
(pF)
L
2
1
(µH)
L
(µH)
2
10.7 20 - 60 20 - 60 3 - 5 3 - 5 100 3 - 30 3 - 30 0.1 - 0.25 0.15 - 0.3
NOTES:
4. For Power Gain Test.
5. For Noise Figure Test.
FIGURE 3. POWER GAIN AND NOISE FIGURE TEST CIRCUIT
(CASCODE CONFIGURATION)
4
f
(MHz)
C
(pF)
C
1
(pF)
L
2
1
(µH)
L
(µH)
2
10.7 30 - 60 20 - 50 3 - 6 3 - 6 100 2 - 15 2 - 15 0.2 - 0.5 0.2 - 0.5
NOTES:
6. For Power Gain Test.
7. For Noise Figure Test.
FIGURE 4. POWER GAIN AND NOISE FIGURE TEST CIRCUIT
(DIFFERENTIAL AMPLIFIER CONFIGURATION AND TERMINAL 7 CONNECTED TO VCC)
Page 5
CA3028A
Test Circuits
C
1
50 SIGNAL
SOURCE
(NOTE 8) OR
NOISE DIODE
(NOTE 9)
(MHz)
f
(Continued)
1
L
1
3
0.001µF
C
(pF)
5k
7
ICUT
C
1
2
(pF)
1k
8
6
5
2k
L
1
(µH)
L
VOLTMETER (NOTE 8) OR
NOISE AMP
L
2
(µH)
2
C
2
50 RF
(NOTE 9)
10.7 30 - 60 20 - 50 3 - 6 3 - 6 100 2 - 15 2 - 15 0.2 - 0.5 0.2 - 0.5
NOTES:
8. For Power Gain Test.
9. For Noise Figure Test.
FIGURE 5. POWER GAIN AND NOISE FIGURE TEST CIRCUIT
(DIFFERENTIAL AMPLIFIER CONFIGURATION)
V
CC
V
0.01
µF
INPUT
CC
1k
0.01µF
5
502k
1 3
7
8
ICUT
6
0.01
µF
50
V
CC
OUTPUT
0.01µF
FIGURE 6. OUTPUT POWER TEST CIRCUIT
5k
1k
8
6
5
2k
L
1
(µH)
L
(µH)
L
2
2
C
2
VOLTMETER
50
SIGNAL
SOURCE
C
1
(MHz)
7
1
3
0.001µF
C
1
(pF)
ICUT
C
(pF)
2
L
1
f
10.7 30 - 60 20 - 50 3 - 6 3 - 6 100 2 - 15 2 - 15 0.2 - 0.5 0.2 - 0.5
FIGURE 7. AGC RANGE TEST CIRCUIT (DIFFERENTIAL
AMPLIFIER)
V
50RF
CC
V
CC
10
1k LOAD
8
INPUT
50
0.01µF
7
1
2
ICUT
3
0.01µF
6
5
0.01µF
4
2k
OUTPUT
1k
FIGURE8. TRANSFER CHARACTERISTIC (VOL TAGEGAIN) TEST
CIRCUIT (10.7MHz) CASCODE CONFIGURA TION
0.01µF
5
Page 6
CA3028A
Test Circuits
(Continued)
INPUT
50
10µH
0.01µF
V
CC
10
1k LOAD
8
7
1
ICUT
3
6
5
2k
0.001µF
OUTPUT
1k
0.01µF
FIGURE 9. TRANSFER CHARACTERISTIC (VOLTAGE GAIN) TEST CIRCUIT (10.7MHz) DIFFERENTIAL AMPLIFIER CONFIGURATION
Typical Performance Curves
POSITIVE DC SUPPLY VOLTS (VCC) NEGATIVE DC SUPPLY VOLTS (V
75.0
62.5
50.0
37.5
25.0
INPUT BIAS CURRENT (µA)
VCC = +6V
= -6V
V
EE
12.5
0
-75 -50 -25 0 25 50 75 100 125
VCC = +12V V
EE
TEMPERATURE (oC)
= -12V
EE
)
DIFFERENTIAL AMPLIFIER CONFIGURATION
3.5
2.5
QUIESCENT OPERATING CURRENT (mA)
1.5
-75 -50 -25 0 25 50 75 100 125 TEMPERATURE (
VEE = -12V
VEE = -9V
o
C)
FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE FIGURE 11. QUIESCENT OPERATING CURRENT vs
TEMPERATURE
6
Page 7
CA3028A
Typical Performance Curves
3.5 VCC = 6V
3.0
(mA)
8
2.5
OR I
6
2.0
1.5
1.0
0.5
OPERATING CURRENT, I
0
0 -5 -10 -15
DC EMITTER SUPPLY (V)
(Continued)
-20
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC
A
2
1
AGC BIAS CURRENT (mA)
0
0 4 10 12
AGC BIAS, TERMINAL NO. 7 (V)
862
FIGURE 12. OPERATING CURRENT vs VEEVOLTAGE FIGURE 13. AGC BIAS CURRENT vs BIAS VOLTAGE
(TERMINAL 7)
CASCODE CONFIGURATION T
= 25oC
A
180
170
160
TOTAL POWER DISSIPATION,±12V (mW)
150
VCC = +12V
= -12V
V
EE
VCC = +6V V
= -6V
EE
-50 -25 0 25 50 75 100 125 TEMPERATURE (oC)
40
35
30
25
TOTAL POWER DISSIPATION,±6V (mW)
45 40 35 30 25 20 15
POWER GAIN (dB)
10
5 0
10 100
20 30 40 50 60 70 80 90
FREQUENCY (MHz)
VCC = +12V
VCC = +9V
FIGURE 14. POWER DISSIPATION vs TEMPERATURE
CASCODE CONFIGURATION T
= 25oC, f = 100MHz
A
9
8
7
6
NOISE FIGURE (dB)
5
912
10 11
DC COLLECTOR SUPPLY VOLTAGE (V)
FIGURE 16. 100MHz NOISE FIGURE vs COLLECTOR SUPPLY
VOLTAGE (CASCODE CONFIGURATION)
7
FIGURE 15. POWER GAIN vs FREQUENCY (CASCODE
CONFIGURATION)
DIFFERENTIAL AMPLIFIER CONFIGURATION
DIFFERENTIAL AMPLIFIER CONFIGURATION
40
TA = 25oC
35 30 25 20 15
POWER GAIN (dB)
10
5 0
10 100
20 30 40 50 60 70 80 90
FREQUENCY (MHz)
VCC = +12V
VCC = +9V
FIGURE 17. POWERGAIN vs FREQUENCY (DIFFERENTIAL
AMPLIFIER CONFIGURATION)
Page 8
CA3028A
Typical Performance Curves
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, f = 100MHz
A
9
8
7
6
NOISE FIGURE (dB)
5
912
10 11
DC COLLECTOR SUPPLY VOLTAGE (V)
(Continued)
FIGURE 18. 100MHz NOISE FIGURE vs COLLECTOR SUPPLY
VOLTAGE (DIFFERENTIAL AMPLIFIER CONFIGURATION)
CASCODE CONFIGURATION, TA = 25oC I
7
6
) OR
11
) (mS)
5
11
4
3
2
1
SUSCEPTANCE (b
INPUT CONDUCTANCE (g
0
1 100
= 4.5mA, VCC = +9V
C(STAGE)
b
11
10
FREQUENCY (MHz)
g
11
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, VCC = +9V, f = 100MHz
A
20
POWER GAIN
15
10
NOISE FIGURE
5
NOISE FIGURE (dB) OR POWER GAIN (dB)
0
92
POSITIVE DC BIAS VOLTAGE (V)
345678
FIGURE 19. 100MHz NOISE FIGURE AND POWER GAIN vs
BASE-TO-EMITTER BIAS VOLTAGE (TERMINAL 7)
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, VCC = +9V
A
3
IC OF EACH TRANSISTOR = 2.2mA
) OR
11
) (mS)
11
2
b
11
1
SUSCEPTANCE (b
INPUT CONDUCTANCE (g
0
1 10010
FREQUENCY (MHz)
g
11
FIGURE 20. INPUT ADMITTANCE (Y11) vs FREQUENCY
(CASCODE CONFIGURATION)
)
12
REVERSE TRANSFER CONDUCTANCE (g
CASCODE CONFIGURATION, TA = 25oC I
C(STAGE)
20
) (µS)
15
12
10
5 0
-5
-10
OR SUSCEPTANCE (b
-15
-20 1 100
= 4.5mA, VCC = +9V
10
FREQUENCY (MHz)
g
12
b
12
FIGURE 22. REVERSE TRANSADMITTANCE (Y12) vs
FREQUENCY (CASCODE CONFIGURATION)
8
FIGURE 21. INPUT ADMITTANCE (Y11) vs FREQUENCY
(DIFFERENTIAL AMPLIFIER CONFIGURATION)
)
12
REVERSE TRANSFER CONDUCTANCE (g
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, VCC = +9V
A
0.3
OF EACH TRANSISTOR = 2.2mA
I
C
) (mS)
0.2
12
0.1
0
-0.1
OR SUSCEPTANCE (b
-0.2
-0.3 20 30 40 50 60 80 200 300
FREQUENCY (MHz)
g
12
b
12
10010
FIGURE 23. REVERSE TRANSADMITTANCE (Y12) vs
FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)
Page 9
CA3028A
Typical Performance Curves
)
21
FORW ARD TRANSFER CONDUCTANCE (g
CASCODE CONFIGURATION, TA = 25oC I
100
) (mS)
80
21
60 40 20
0
-20
-40
OR SUSCEPTANCE (b
-60
-80 1 10010
= 4.5mA, VCC = +9V
C(STAGE)
23456789
FREQUENCY (MHz)
(Continued)
g
21
b
21
FIGURE 24. FORWARD TRANSADMITTANCE (Y21) vs
FREQUENCY (CASCODE CONFIGURATION)
CASCODE CONFIGURATION, TA = 25oC I
) (mS)
22
0
-0.02
-0.04
-0.06
OUTPUT CONDUCTANCE (g
-0.08
1 100
= 4.5mA, VCC = +9V
C(STAGE)
10
FREQUENCY (MHz)
b
22
g
22
3 2 1 0
) (mS)
22
OUTPUT SUSCEPTANCE (b
)
21
FORW ARD TRANSFER CONDUCTANCE (g
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, VCC = +9V
A
IC OF EACH TRANSISTOR = 2.2mA
30
) (mS)
20
21
10
0
-10
-20
OR SUSCEPTANCE (b
-30
-40 1 10010
FREQUENCY (MHz)
b
21
g
21
FIGURE 25. FORWARD TRANSADMITTANCE (Y21) vs
FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)
DIFFERENTIAL AMPLIFIER CONFIGURATION, T
= 25oC
A
OF EACH TRANSISTOR= 2.2mA, VCC = +9V
I
C
) (mS)
22
0.6
0.5
0.4
0.3
0.2
0.1
OUTPUT CONDUCTANCE (g
0
1 100
10
FREQUENCY (MHz)
b
22
g
22
2
1.5
1.0
0.5
0
) (mS)
22
OUTPUT SUSCEPTANCE (b
FIGURE 26. OUTPUT ADMITTANCE (Y22) vs FREQUENCY
(CASCODE CONFIGURATION)
10
OUTPUT POWER (µW)
1
10 100
DIFFERENTIAL AMPLIFIER CONFIGURATION
= 25oC, CONSTANT POWER INPUT = 2µW
T
A
VCC = +12V
VCC = +9V
FREQUENCY (MHz)
FIGURE 28. OUTPUT POWER vs FREQUENCY - 50INPUT
AND 50 OUTPUT (DIFFERENTIAL AMPLIFIER CONFIGURATION)
9
FIGURE 27. OUTPUT ADMITTANCE (Y22) vs FREQUENCY
(DIFFERENTIAL AMPLIFIER CONFIGURATION)
DIFFERENTIAL AMPLIFIER CONFIGURATION T
= 25oC, VCC = +9V
A
40
f = 10.7MHz
20
0
-20
POWER GAIN (dB)
-40 9 876543210
DC BIAS VOLTAGE ON TERMINAL NO. 7 (V)
100MHz
FIGURE29. AGCCHARACTERISTICS
Page 10
CA3028A
Typical Performance Curves
CASCODE CONFIGURATION T
= 25oC, f = 10.7MHz
A
5
4
VCC = +12V
3
2
OUTPUT VOLTAGE (V)
1
0
0 0.150.05 0.1
FIGURE 30. TRANSFER CHARACTERISTICS (CASCODE
CONFIGURATION)
VCC = +9V
INPUT VOLTAGE (V)
(Continued)
Glossary of Terms
AGC Bias Current - The current drawn by the device from
the AGC voltage source, at maximum AGC voltage. AGC Range - The total change in voltage gain (from
maximum gain to complete cutoff) which maybe achieved by application of the specified range of dc voltage to the AGC input terminal of the device.
Common Mode Rejection Ratio - The ratio of the full differential voltage gain to the common mode voltage gain.
Power Dissipation - The totalpower drain of the devicewith no signal applied and no external load current.
Input Bias Current - The average value (one half the sum) of the currents at the two input terminalswhen the quiescent operating voltages at the two output terminals are equal.
Input Offset Current - The difference in the currents at the two input terminals when the quiescent operating voltages at the two output terminals are equal.
3.0 DIFFERENTIAL AMPLIFIER CONFIGURATION
= 25oC, f = 10.7MHz
T
A
2.5
2.0
1.5
OUTPUT VOLTAGE (V)
1.0
0.5
FIGURE 31. TRANSFERCHARACTERISTICS (DIFFERENTIAL
VCC = +12V
VCC = +9V
0.10.050
INPUT VOLTAGE (V)
AMPLIFIER CONFIGURATION)
0.15
Noise Figure - The ratio of the total noise power of the
deviceand a resistive signal source to the noise powerof the signal source alone, the signal source representing a generator of zero impedance in series with the source resistance.
Power Gain - The ratio of the signal power developed at the output of the device to the signal power applied to the input, expressed in dB.
Quiescent Operating Current - The average (DC) value of the current in either output terminal.
Voltage Gain - The ratio of the change in output voltage at either output terminal with respect to ground, to a change in input voltage at either input terminal with respect to ground, with the other input terminal at AC ground.
Input Offset Voltage - The difference in the DC voltages which must be applied to the input terminals to obtain equal quiescent operating voltages (zero output offset voltage) at the output terminals.
10
Loading...