Datasheet BCW61DLT1 Datasheet (LRC)

Page 1
查询BCW61BLT1供应商查询BCW61BLT1供应商
General Purpose Transistors
PNP Silicon
LESHAN RADIO COMPANY, LTD.
BCW61BLT1
3 COLLECTOR
1 BASE
2 EMITTER
MAXIMUM RATINGS
Rating Symbol Value Unit
CEO
CBO
EBO
C
– 32 Vdc – 32 Vdc
– 5.0 Vdc
– 100 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR– 5 Board, (1) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient R T otal Device Dissipation Alumina Substrate, (2) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient R Junction and Storage T emperature TJ , T
P
D
225 mW
1.8 mW/°C
θJA
P
D
556 °C/W
300 mW
2.4 mW/°C
θJA
stg
417 °C/W
–55 to +150 °C
BCW61CLT1 BCW61DLT1
3
1
2
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
DEVICE MARKING
BCW61BLT1 = BB, BCW61CLT1 = BC, BCW61DLT1 = BD
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted.)
A
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage (IC = –2.0 mAdc, IB = 0 ) Emitter–Base Breakdown Voltage (I E= –1.0 µAdc, I C = 0) Collector Cutoff Current I (VCE = –32 Vdc, ) –20 nAdc (VCE = –32 Vdc, TA = 150°C) –20 µAdc
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
V
(BR)CEO
V
(BR)EBO
– 32 Vdc
– 5.0 Vdc
CES
M10–1/6
Page 2
LESHAN RADIO COMPANY, LTD.
BCW61BLT1 BCW61CLT1 BCW61DLT1
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted) (Continued)
A
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS
DC Current Gain h ( IC= – 10 µAdc, VCE = – 5.0 Vdc ) BCW61B 30
BCW61C 40 — BCW61D 100
( IC= – 2.0 mAdc, VCE = – 5.0 Vdc ) h
BCW61B 140 310 BCW61C 250 460 BCW61D 380 630
( IC= – 50 mAdc, VCE = – 1.0 Vdc ) h
BCW61B 80 — BCW61C 100
BCW61D 100 — AC Current Gain h ( VCE = – 5.0Vdc, IC= – 2.0 mAdc, BCW61B 175 350 f= 1.0 kHz ) BCW61C 250 500
BCW61D 350 700 Collector–Emitter Saturation Voltage V ( IC = – 50 mAdc, IB = – 1.25 mAdc ) – 0.55 ( IC = – 10 mAdc, IB = – 0.25 mAdc ) – 0.25 Base–Emitter Saturation Voltage V ( IC = – 50 mAdc, IB = – 1.25 mAdc ) – 0.68 – 1.05 ( IC = – 10 mAdc, IB = – 0.25 mAdc ) –0.6 – 0.85 Base–Emitter On Voltage V ( IC = – 2.0 mAdc, VCE = – 5.0 Vdc ) – 0.6 – 0.75
FE
FE
FE
FE
CE(sat)
BE(sat)
BE(on)
SMSMALL–SIGNAL CHARACTERISTICS
Output Capacitance (V
= – 10 Vdc, I C = 0, f = 1.0 MHz)
CE
Noise Figure (V
= – 5.0 Vdc, I C = – 0.2 mAdc, R S = 2.0 k, f = 1.0 kHz, BW = 200 Hz)
CE
SWITCHING CHARACTERISTICS
Turn–On Time (I C = – 10 mAdc, I B1 = – 1.0 mAdc) Turn–Off T ime (I B2 =– 1.0 mAdc, V BB = – 3.6 Vdc, R 1 = R 2 = 5.0 k, R L = 990 Ω)
C
obo
6.0 pF
NF 6.0 dB
t
on
t
off
150 ns
800 ns
Vdc
Vdc
Vdc
M10–2/6
Page 3
LESHAN RADIO COMPANY, LTD.
BCW61BLT1 BCW61CLT1 BCW61DLT1
TYPICAL NOISE CHARACTERISTICS
(V CE = –5.0 Vdc, T A = 25°C)
10
7.0
5.0
3.0
1.0mA
, NOISE VOLTAGE (nV)
n
2.0
e
1.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 k
IC=10 µA
30µA
100µA
300µA
BANDWIDTH = 1.0 Hz
f, FREQUENCY (Hz)
Figure 1. Noise V oltage
1.0M 500k 200k 100k
50k 20k
0.5 dB
10k
5.0k
2.0k
1.0k 500
, SOURCE RESISTANCE ()
200
S
R
100
10 20 30 50 70 100 200 300 500 700 1.0K
1.0 dB
BANDWIDTH = 1.0 Hz
1.0
~
R S 0
~
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
, NOISE CURRENT (pA)
n
I
0.1 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 k
NOISE FIGURE CONTOURS
(V CE = –5.0 Vdc, T A = 25°C)
1.0M 500k
200k 100k
50k 20k 10k
5.0k
2.0k
2.0 dB
3.0 dB
5.0dB
1.0k 500
, SOURCE RESISTANCE ()
200
S
R
100
10 20 30 50 70 100 200 300 500 700 1.0K
BANDWIDTH = 1.0 Hz
IC=1.0mA
300µA
100µA
30µA 10µA
f, FREQUENCY (Hz)
Figure 2. Noise Current
BANDWIDTH = 1.0 Hz
0.5 dB
2.0 dB
3.0 dB
~
R S
~
1.0 dB
8
5.0 dB
I C , COLLECTOR CURRENT (µA)
Figure 3. Narrow Band, 100 Hz
1.0M 500k
200k 100k
50k 20k 10k
5.0k
2.0k
1.0k 500
, SOURCE RESISTANCE ()
200
S
R
100
10 20 30 50 70 100 200 300 500 700 1.0K
0.5 dB
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
10 Hz to 15.7KHz
1.0 dB
2.0 dB
3.0 dB
5.0 dB
I C , COLLECTOR CURRENT (µA)
Figure 4. Narrow Band, 1.0 kHz
Noise Figure is Defined as:
2
NF = 20 log
e n 2 +4KTRS +I
( –––––––––––––––)
10
4KTR
e n= Noise Voltage of the T ransistor referred to the input. (Figure 3) I
= Noise Current of the Transistor referred to the input. (Figure 4)
n
K = Boltzman’s Constant (1.38 x 10 T = Temperature of the Source Resistance (°K) R s= Source Resistance ( Ω )
2
R
n
S
1/ 2
S
–23
j/°K)
M10–3/6
Page 4
LESHAN RADIO COMPANY, LTD.
BCW61BLT1 BCW61CLT1 BCW61DLT1
TYPICAL STATIC CHARACTERISTICS
1.0
0.8
I C= 1.0 mA
0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
, COLLECTOR– EMITTER VOL T AGE (VOL TS)
CE
V
0.6
0.4
0.2
0
10 mA
50 mA
I B , BASE CURRENT (mA)
Figure 6. Collector Saturation Region
1.4
T
= 25°C
J
1.2
1.0
0.8
V
@ I C /I B = 10
BE(sat)
0.6
0.4
V, VOLTAGE (VOLTS)
0.2
0
0.1 0.2 0.5 1.0 2.0 5.0 10 2 0 50 100
V
CE(sat)
V
@ V CE= 1.0 V
BE(on)
@ I C /I B = 10
I C , COLLECTOR CURRENT (mA)
Figure 8. “On” Voltages
T A= 25°C BCW61
100 mA
100
T A = 25°C PULSE WIDTH =300 µs
80
DUTY CYCLE<2.0%
350µA
I B= 400 µA
300µA
60
40
20
, COLLECTOR CURRENT (mA)
C
I
0
0 5.0 10 15 20 25 30 35 40
V CE , COLLECTOR–EMITTER VOL TAGE (VOLTS)
Figure 7. Collector Characteristics
1.6
*APPLIES for I C / I B<
0.8
∗ θ VC for V
0
CE(sat)
h
/ 2
FE
25°C to 125°C
–55°C to 25°C
–0.8
25°C to 125°C
–1.6
θ VB for V
–2.4
, TEMPERATURE COEFFICIENTS (mV/°C)
0.1 0.2 0.5 1.0 2.0 5.0 10 2 0 50 100
V
θ
BE
–55°C to 25°C
I C , COLLECTOR CURRENT (mA)
Figure 9. Temperature Coefficients
250µA 200µA
150µA
100µA
50 µA
M10–4/6
Page 5
BCW61BLT1 BCW61CLT1 BCW61DLT1
TYPICAL DYNAMIC CHARACTERISTICS
LESHAN RADIO COMPANY, LTD.
500 300 200
100
70 50
30 20
t, TIME (ns)
10
7.0
5.0
1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
td @ V
BE(off)
= 0.5 V
t
f
V CC= 3.0 V IC /I B= 10 T J= 25°C
I C , COLLECTOR CURRENT (mA)
Figure 10. Turn–On Time
500
T J = 25°C
300
200
V CE=20 V
5.0 V
1000
700 500
300 200
100
70 50
30
t, TIME (ns)
20
10
-1.0 -2.0 -3.0 -5.0 -7.0 -10 -20 -30 -50 -70 -100
t
t
s
f
VCC= –3.0 V IC /I B= 10 IB1=I T J= 25°C
I C , COLLECTOR CURRENT (mA)
Figure 11. Turn–Off Time
10.0
7.0
5.0
3.0
C
ib
T J= 25°C
B2
100
70
, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
T
50
f
0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
I C , COLLECTOR CURRENT (mA)
Figure 12. Current–Gain — Bandwidth Product
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 1 0 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k 50k 100k
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
D = 0.5
0.2
0.1
0.05
0.02
0.01 SINGLE PULSE
2.0
C, CAPACITANCE (pF)
1.0
0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 5 0
V R , REVERSE VOLTAGE (VOLTS)
Figure 13. Capacitance
P
(pk)
FIGURE 19A
t
1
t
2
DUTY CYCLE, D = t D CURVES APPL Y FOR POWER PULSE TRAIN SHOWN READ TIME AT t 1 (SEE AN–569)
= r(t) • R
Z
θJA(t)
T
J(pk)
– T A = P
θJA
(pk) Z θJA(t)
t, TIME (ms)
Figure 14. Thermal Response
C
ob
/ t
1
2
M10–5/6
Page 6
4
10
V
= 30 V
CC
3
10
I
2
10
1
10
CEO
I
CBO
AND
@ V
BE(off)
= 3.0 V
I
0
10
–1
10
, COLLECTOR CURRENT (nA)
C
–2
10
I
–4 –2 0 +20 +40 +60 + 80 +100 +120 +140 +160
CEX
T J , JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
LESHAN RADIO COMPANY, LTD.
BCW61BLT1 BCW61CLT1 BCW61DLT1
DESIGN NOTE: USE OF THERMAL RESPONSE DA T A
A train of periodical power pulses can be represented by the model as shown in Figure 15. Using the model and the device thermal response the normalized effective transient thermal re­sistance of Figure 14 was calculated for various duty cycles. To find Z the steady state value R Example: The MPS3905 is dissipating 2.0 watts peak under the follow­ing conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore T = r(t) x P For more information, see AN–569.
, multiply the value obtained from Figure 14 by
θJA(t)
(pk)
x R
.
θJA
= 0.22 x 2.0 x 200 = 88°C.
θJA
M10–6/6
Loading...