Datasheet 74AHCT1G14, 74AHC1G14 Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
74AHC1G14; 74AHCT1G14
Inverting Schmitt trigger
Product specification File under Integrated Circuits, IC06
1999 Aug 05
Page 2
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
FEATURES
Symmetrical output impedance
High noise immunity
ESD protection:
HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V
Low power dissipation
Balanced propagation delays
Very small 5 pin package
Output capability: standard.
APPLICATIONS
Wave and pulse shapers
Astable multivibrators
Monostable multivibrators.
DESCRIPTION
The 74AHC1G/AHCT1G14 is a high-speed Si-gate CMOS device.
The 74AHC1G/AHCT1G14 provides the inverting buffer function with Schmitt-trigger action.These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.
QUICK REFERENCE DATA
GND = 0 V; T
=25°C; tr=tf≤3.0 ns.
amb
SYMBOL PARAMETER CONDITIONS
t
PHL/tPLH
C
I
propagation delay inA to outY
input
CL=15pF; VCC=5V
3.2 4.1 ns
1.5 1.5 pF
capacitance
C
PD
powerdissipation capacitance
CL=15pF; f = 1 MHz;
12 13 pF
notes 1 and 2
Notes
1. C
is used to determine the dynamic power dissipation (PDin µW).
PD
PD=CPD× V
2
× fi+(CL×V
CC
2
× fo) where:
CC
fi= input frequency in MHz; fo= output frequency in MHz; CL= output load capacitance in pF; VCC= supply voltage in Volts.
2. The condition is VI= GND to VCC.
FUNCTION TABLE
See note 1.
INPUT (inA) OUTPUT (outY)
LH
HL
Note
1. H = HIGH voltage level; L = LOW voltage level.
TYPICAL
UNIT
AHC1G AHCT1G
ORDERING INFORMATION
PACKAGES
TYPE NUMBER
TEMPERATURE
RANGE
PINS PACKAGE MATERIAL CODE MARKING
74AHC1G14GW 40 to +85 °C 5 SC-88A plastic SOT353 AF 74AHCT1G14GW 5 SC-88A plastic SOT353 CF
1999 Aug 05 2
Page 3
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
PINNING
PIN SYMBOL DESCRIPTION
1 n.c. not connected 2 inA data input 3 GND ground (0 V) 4 outY data output 5V
CC
DC supply voltage
handbook, halfpage
handbook, halfpage
n.c
inA
GND
1 2
14
3
MNA022
V
5
CC
outY
4
Fig.1 Pin configuration.
24
MNA024
handbook, halfpage
handbook, halfpage
inA
inA outY
2
MNA023
Fig.2 Logic symbol.
4
outY
MNA025
Fig.3 IEC logic symbol.
1999 Aug 05 3
Fig.4 Logic diagram.
Page 4
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
RECOMMENDED OPERATING CONDITIONS
SYMBOL PARAMETER CONDITIONS
UNIT
MIN. TYP. MAX. MIN. TYP. MAX.
74AHC1G 74AHCT1G
V
CC
V
I
V
O
T
amb
DC supply voltage 2.0 5.0 5.5 4.5 5.0 5.5 V input voltage 0 5.5 0 5.5 V output voltage 0 V operating ambient
temperature
see DC and AC characteristics per
40 +25 +85 40 +25 +85 °C
0 V
CC
CC
V
device
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); voltages are referenced to GND (ground = 0 V).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CC
V
I
I
IK
I
OK
I
O
I
CC
T
stg
P
D
DC supply voltage 0.5 +7.0 V input voltage range 0.5 +7.0 V DC input diode current VI< 0.5 V −−20 mA DC output diode current VO< 0.5 Vor VO>VCC+ 0.5 V; note 1 −±20 mA DC output source or sink current 0.5V<VO<VCC+ 0.5 V −±25 mA DC VCC or GND current −±75 mA storage temperature 65 +150 °C power dissipation per package temperature range: 40 to +85 °C;
200 mW
note 2
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above 55 °C the value of P
derates linearly with 2.5 mW/K.
D
1999 Aug 05 4
Page 5
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
DC CHARACTERISTICS Family 74AHC1G
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).
SYMBOL PARAMETER
V
OH
HIGH-level output voltage; all outputs
HIGH-level output voltage
V
OL
LOW-level output voltage; all outputs
LOW-level output voltage
I
I
I
CC
input leakage current VI=VCCor GND 5.5 −− 0.1 1.0 µA quiescent supply
current
C
I
input capacitance 1.5 10 10 pF
TEST CONDITIONS T
OTHER VCC (V)
MIN. TYP. MAX. MIN. MAX.
VI=VIHor VIL; IO= 50 µA
2.0 1.9 2.0 1.9 V
3.0 2.9 3.0 2.9
4.5 4.4 4.5 4.4
V
I=VIH
or VIL;
3.0 2.58 −−2.48 V
IO= 4.0 mA V
I=VIH
or VIL;
4.5 3.94 −−3.8
IO= 8.0 mA VI=VIHor VIL;
IO=50µA
2.0 0 0.1 0.1 V
3.0 0 0.1 0.1
4.5 0 0.1 0.1
V
I=VIH
or VIL;
3.0 −− 0.36 0.44 V
IO= 4.0 mA V
I=VIH
or VIL;
4.5 −− 0.36 0.44
IO= 8.0 mA
VI=VCCor GND;
5.5 −− 1.0 10 µA
IO=0
(°C)
amb
25 40 to +85
UNIT
1999 Aug 05 5
Page 6
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
Family 74AHCT1G
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).
SYMBOL PARAMETER
V
OH
HIGH-level output voltage; all outputs
HIGH-level output voltage V
V
OL
LOW-leveloutputvoltage; all outputs
LOW-level output voltage V
I I
I
I CC
CC
input leakage current VI=VIHor V quiescent supply current VI=VCCor GND;
additional quiescent supply current per input pin
C
I
input capacitance 1.5 10 10 pF
TEST CONDITIONS T
OTHER VCC (V)
MIN. TYP. MAX. MIN. MAX.
VI=VIHor VIL;
4.5 4.4 4.5 4.4 V
IO= 50 µA
I=VIH
or VIL;
4.5 3.94 −− 3.8 V
IO= 8.0 mA VI=VIHor VIL;
4.5 0 0.1 0.1 V
IO=50µA
I=VIH
or VIL;
4.5 −−0.36 0.44 V
IO= 8.0 mA
IL
5.5 −−0.1 1.0 µA
5.5 −−1.0 10 µA
IO=0 VI= 3.4 V; other
5.5 −−1.35 1.5 mA inputs at VCCor GND; IO=0
(°C)
amb
25 40 to +85
UNIT
1999 Aug 05 6
Page 7
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
TRANSFER CHARACTERISTICS Type 74AHC1G14
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).
TEST CONDITIONS T
SYMBOL PARAMETER
25 40 to +85
OTHER VCC (V)
MIN. TYP. MAX. MIN. MAX.
V
T+
positive-going threshold see Figs 7 and 8 3.0 −−2.2 2.2 V
4.5 −−3.15 3.15
5.5 −−3.85 3.85
V
T
negative-going threshold see Figs 7 and 8 3.0 0.9 −− 0.9 V
4.5 1.35 −− 1.35
5.5 1.65 −− 1.65
V
H
hysteresis (VT+− VT) see Figs 7 and 8 3.0 0.3 1.2 0.3 1.2 V
4.5 0.4 1.4 0.4 1.4
5.5 0.5 1.6 0.5 1.6
Type 74AHCT1G14
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).
TEST CONDITIONS T
SYMBOL PARAMETER
25 40 to +85
WAVEFORMS VCC (V)
MIN. TYP. MAX. MIN. MAX.
V
T+
positive-going threshold see Figs 7 and 8 4.5 −−2.0 2.0 V
5.5 −−2.0 2.0
V
T
negative-going threshold see Figs 7 and 8 4.5 0.5 −−0.5 V
5.5 0.6 −− 0.6
V
H
hysteresis (VT+− VT) see Figs 7 and 8 4.5 0.4 1.4 0.4 1.4 V
5.5 0.4 1.6 0.4 1.6
amb
amb
(°C)
UNIT
(°C)
UNIT
1999 Aug 05 7
Page 8
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
AC CHARACTERISTICS Type 74AHC1G14
GND = 0 V; tr=tf≤3.0 ns.
SYMBOL PARAMETER
VCC= 3.0 to 3.6V; note 1
t
PHL/tPLH
propagation delay inA to outY
V
= 4.5 to 5.5 V; note 2
CC
t
PHL/tPLH
propagation delay inA to outY
Notes
1. Typical values at V
CC
= 3.3 V.
2. Typical values at VCC= 5.0 V.
Type 74AHCT1G14
GND = 0 V; tr=tf≤3.0 ns.
SYMBOL PARAMETER
TEST CONDITIONS T
amb
(°C)
25 40 to +85
WAVEFORMS C
L
MIN. TYP. MAX. MIN. MAX.
see Figs 5 and 6 15 pF 4.2 12.8 1.0 15.0 ns
50 pF 6.0 16.3 1.0 18.5 ns
see Figs 5 and 6 15 pF 3.2 8.6 1.0 10.0 ns
50 pF 4.6 10.6 1.0 12.0 ns
TEST CONDITIONS T
amb
(°C)
25 40 to +85
WAVEFORMS C
L
MIN. TYP. MAX. MIN. MAX.
UNIT
UNIT
VCC= 4.5 to 5.5 V; note 1
t
PHL/tPLH
propagation delay inA to outY
Note
1. Typical values at V
CC
see Figs 5 and 6 15 pF 4.1 7.0 1.0 8.0 ns
50 pF 5.9 8.5 1.0 10.0 ns
= 5.0 V.
1999 Aug 05 8
Page 9
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
AC WAVEFORMS
handbook, halfpage
inA INPUT
outY OUTPUT
FAMILY
REQUIREMENTS
AHC1G GND to V
(1)
V
M
V
M
VI INPUT
CC
t
PHL
(1)
t
PLH
MNA033
V
M
INPUT
OUTPUT
50% VCC50% V
AHCT1G GND to 3.0 V 1.5 V 50% V
Fig.5 The input (inA)to output(outY) propagation
delays.
TRANSFER CHARACTERISTIC WAVEFORMS
handbook, halfpage
V
PULSE
GENERATOR
V
M
Definitions for test circuit:
CC CC
CL= Load capacitance including jig and probe capacitance. (See Chapter “AC characteristics” for values).
= Termination resistance should be equal to the output
R
T
impedance Z
of the pulse generator.
o
I
V
CC
V
D.U.T.
R
T
O
C
L
MNA101
Fig.6 Load circuitry for switching times.
handbook, halfpage
V
O
V
H
V
T+
V
T
MNA026
Fig.7 Transfer characteristic.
1999 Aug 05 9
handbook, halfpage
V
Fig.8 The definitions of VT+, VT and VH.
V
V
O
T+
I
V
T
V
MNA027
H
Page 10
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
1.5
handbook, halfpage
I
CC
(mA)
1
0.5
0
01 3
2
MNA401
VI (V)
Fig.9 Typical AHC1G14 transfer characteristics;
VCC= 3.0 V.
handbook, halfpage
5
I
CC
(mA)
4
3
2
1
0
05
1234
MNA402
V
(V)
I
Fig.10 Typical AHC1G14 transfer characteristics;
VCC= 4.5 V.
handbook, halfpage
8
I
CC
(mA)
6
4
2
0
02 6
4
MNA403
VI (V)
Fig.11 Typical AHC1G14 transfer characteristics;
VCC= 5.5 V.
1999 Aug 05 10
handbook, halfpage
5
I
CC
(mA)
4
3
2
1
0
05
1234
MNA404
V
(V)
I
Fig.12 Typical AHCT1G14transfer characteristics;
VCC= 4.5 V.
Page 11
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
APPLICATION INFORMATION
The slow input rise and fall times cause additional power dissipation, this can be calculated using the following
handbook, halfpage
8
I
CC
(mA)
6
4
2
0
02 6
MNA405
4
VI (V)
formula: Pad=fi×(tr× I
CC(AV)+tf×ICC(AV)
) × VCC where: Pad= additional power dissipation (µW); fi= input frequency (MHz); tr= input rise time (ns); 10% to 90%; tf= input fall time (ns); 90% to 10%; I
= average additional supply current (µA).
CC(AV)
Average ICC differs with positive or negative input transitions, as shown in Figs 14 and 15.
AHC1G/AHCT1G14 used in relaxation oscillator circuit, see Fig.16.
Note to the application information:
1. All valuesgiven are typicalunless otherwise specified.
Fig.13 Typical AHCT1G14transfer characteristics;
VCC= 5.5 V.
200
handbook, halfpage
I
CC(AV)
(µA)
150
100
50
0
0 2.0 4.0 6.0
positive-going
negative-going
MNA036
edge
edge
VCC (V)
200
handbook, halfpage
I
CC(AV)
(µA)
150
100
50
0
0462
MNA058
positive-going
edge
negative-going
edge
V
(V)
CC
Fig.14 Average ICC for AHC1G Schmitt-trigger
devices; linear change of VI between
0.1VCCto 0.9VCC.
1999 Aug 05 11
Fig.15 Average ICC for AHCT1G Schmitt-trigger
devices; linear change of VI between
0.1VCCto 0.9VCC.
Page 12
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
C
=
-------------------------- -
0.55 RC×
1
=
---
-------------------------- -
T
0.60 RC×
R
MNA035
1
1
handbook, halfpage
For AHC1G:
For AHCT1G:
1
f
--­T
f
Fig.16 Relaxation oscillator using the
AHC1G/AHCT1G14.
1999 Aug 05 12
Page 13
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
PACKAGE OUTLINE
Plastic surface mounted package; 5 leads SOT353
D
y
45
132
e
1
e
b
p
wBM
A
A
1
E
H
E
detail X
Q
L
p
AB
X
v M
A
c
0 1 2 mm
scale
DIMENSIONS (mm are the original dimensions)
A
UNIT
mm
A
1.1
0.8
OUTLINE VERSION
SOT353
max
0.1
1
b
cD
p
0.30
0.20
IEC JEDEC EIAJ
0.25
0.10
2.2
1.8
(2)
E
1.35
1.3
1.15
REFERENCES
e
e
1
0.65
1999 Aug 05 13
H
2.2
2.0
L
Qywv
p
E
0.45
0.15
0.25
0.15
0.2 0.10.2
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28SC-88A
Page 14
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
SOLDERING Introduction to soldering surface mount packages
Thistext gives averybrief insight toa complex technology. A more in-depth account of soldering ICs can be found in our
“Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011). There is no soldering method that is ideal for all surface
mount IC packages.Wave solderingis notalways suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.
Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied tothe printed-circuitboardby screenprinting,stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.
Wave soldering
Conventional single wave soldering is not recommended forsurface mount devices(SMDs)or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically developed.
If wave soldering is used the following conditions must be observed for optimal results:
Use a double-wave soldering method comprising a turbulent wavewith high upwardpressure followed bya smooth laminar wave.
For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
Forpackages with leadsonfour sides, thefootprintmust be placedat a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
1999 Aug 05 14
Page 15
Inverting Schmitt trigger 74AHC1G14; 74AHCT1G14
Suitability of surface mount IC packages for wave and reflow soldering methods
PACKAGE
WAVE REFLOW
(1)
BGA, SQFP not suitable suitable
SOLDERING METHOD
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable
(3)
PLCC
, SO, SOJ suitable suitable LQFP, QFP, TQFP not recommended SSOP, TSSOP, VSO not recommended
(2)
(3)(4) (5)
suitable
suitable suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the
“Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”
.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is onlysuitable for SSOP and TSSOPpackages with a pitch (e) equal toor larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
1999 Aug 05 15
Page 16
Philips Semiconductors – a w orldwide compan y
Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PTPhilips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
1999
Internet: http://www.semiconductors.philips.com
67
SCA
Printed in The Netherlands 245002/01/pp16 Date of release: 1999 Aug 05 Document order number: 9397 750 05741
Loading...