
DATA SHEET
SILICON TRANSISTOR
2SC2954
NPN SILICON EPITAXIAL TRANSISTOR
POWER MINI MOLD
DATA SHEET
Document No. P10405EJ3V0DS00 (3rd edition)
(Previous No. TC-1458A)
Date Published March 1997 N
Printed in Japan
1994©
DESCRIPTION
The 2SC2954 is an NPN epitaxial silicon transistor disigned for
low noise wide band amplifier and buffer amplifier of OSC, for VHF
and CATV bnad.
FEATURES
• Low Noise and High Gain.
f = 200 MHz, 500 MHz
NF: 2.3 dB, 2.4 dB
S21e: 20 dB, 12.5 dB
• Large PT in Small Package.
PT: 2 W with 16 cm2 0.7 mm Ceramic Substrate.
ABSOLUTE MAXIMUM RATINGS (TA = 25
C)
Collector to Base Voltage V
CBO
35 V
Collector to Emitter Voltage V
CEO
18 V
Emitter to Base Voltage V
EBO
3.0 V
Collector Current I
C
150 mA
Total Power Dissipation PT* 2.0 W
Termal Resistance R
th(j-a)
* 62.5
C/W
Junction Temperature T
j
150
C
Storage Temperature T
stg
65 to +150C
* With 16 cm
2
0.7 mm
Ceramic Substrate
PACKAGE DIMENSIONS
(Unit: mm)
Term, Connection
E
C
B
(SOT-89)
: Emitter
: Collector (Fin)
: Base
0.41
−0.03
+0.05
0.47
±0.06
0.42±0.06
4.5±0.1
1.6±0.2
3.0
EB
C
1.5
0.8 MIN.
2.5±0.1
4.0±0.25
1.5±0.1
0.42
±0.06

2
2SC2954
ELECTRICAL CHARACTERISTICS (TA = 25
C)
CHARACTERISTIC SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Collector Cutoff Current I
CBO
VCB = 10 V, IE = 0 100 nA
DC Current Gain h
FE
VCE = 10 V, IC = 50 mA
*1
30 100 200
Gain Bandwidth Product f
T
VCE = 10 V, IC = 50 mA 3.0 4.0 GHz
Feedback Capacitance C
re
VCB = 10 V, Emitter Grounded,
f = 1.0 MHz
1.1 1.8 pF
Insertion Power Gain
S21e
2VCE = 10 V, IC = 50 mA, f = 500 MHz
R
G
= 50
10 12.5 dB
Noise Figure NF VCE = 10 V, IC = 30 mA, f = 500 MHz
R
G
= 50
2.4 4.0 dB
*1
Pulse Measurement PW 350 s, duty cycle 2 %/Pulsed
TYPICAL CHARACTERISTICS (TA = 25
C)
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
T
a
-Ambient Temperature-°C
0
1.0
2.0
50 100 150
P
T
-Total Power Dissipation-W
COLLECTOR CURRENT vs.
BASE TO EMITTER VOLTAGE
V
BE
-Base to Emitter Voltage-V
0
100
200
0.5 1.0
I
C
-Collector Current-mA
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
V
CE
-Collector to Emitter Voltage-V
0
100
200
246810
I
C
-Collector Current-mA
DC CURRENT GAIN vs.
COLLECTOR CURRENT
I
C
-Collector Current-mA
1
20
30
50
70
100
200
10
10 100 200
h
FE
-DC Current Gain
Free Air R
th(j-a)
312.5 °C/W
Ceramic Substrate
16 cm
2
× 0.7 mm
R
th(j-a)
62.5 °C/W
VCE = 10 V
2 mA
1.5 mA
1 mA
IB = 500 A
µ
0
VCE = 10 V

3
2SC2954
FEED-BACK AND OUTPUT CAPACITANCE
vs. COLLECTOR TO BASE VOLTAGE
V
CB-Collector to Base Voltage-V
0
0.2
0.3
0.5
5.0
3.0
2.0
1.0
10
0.1
1.00.5 105.0 30
Cre-Feed-back Capacitance-pF
C
ob-Output Capacitance-pF
f = 1.0 MHz
GAIN BANDWIDTH PRODUCT vs.
COLLECTOR CURRENT
I
C-Collector Current-mA
1.0
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
0.1
105.0 50 100
fT-Gain Bandwidth Product-MHz
VCE = 10 V
INSERTION GAIN vs.
COLLECTOR CURRENT
I
C-Collector Current-mA
5
5
10
15
30
25
20
0
10 3020 10050
|S21e|
2
-Insertion Gain-dB
INSERTION GAIN vs.
FREQYENCY
f-Frequency-GHz
0.1
5
10
15
20
25
30
0
0.2 0.3 0.5 0.7 1.0
|S21e|
2
-Insertion Gain-dB
VCE = 10 V
f = 100 MHz
f = 200 MHz
f = 500 MHz
f = 1 GHz
VCE = 10 V
I
C = 50 mA
Cob (Emitter Open)
Cve (Emitter Graund)

4
2SC2954
NOISE FIGURE, ASSOCIATED GAIN vs.
COLLECTOR CURRENT
I
C
-Collector Current-mA
1
5
4
3
2
1
0
6
15
12
9
6
3
0
18
2 3 5 7 10 20 30 50 70 100
G
a
-Associated Gain-dB
NF-Noise Figure-dB
VCE = 10 V
f = 500 MHz
R
G
= 50 Ω
NF
G
a
NOISE FIGURE,vs.
FREQUENCY
2SC2945 IM
2
, IM3 vs. I
C
VCE = 10 V
V
0
= 110 dB V/75 Ω
R
g
= Re = 75 Ω
at
µ
IM
2
IM
3
f = 90 + 100 MHz
f = 2 × 200 − 190 MHz
IM
2
IM
3
IM
3
IM
2
(dB)
f-Frequency-GHz
0.1
5
4
3
2
1
0
−20
−30
−40
−50
−60
−70
−80
20 30
I
C
(mA)
40 6050 70
6
0.2 0.3 0.5 1.0
NF-Noise Figure-dB
VCE = 10 V
I
C
= 30 mA
R
G
= 50 Ω

5
2SC2954
A
N
G
L
E
O
F
R
E
F
L
E
C
T
I
O
N
C
O
E
F
F
C
I
E
N
T
I
N
D
E
G
R
E
E
S
20
30
40
50
0060
70
80
90
100
110
120
130
140
150
−
160
−
150
−
140
−
130
−
120
−
110
−
100
−
90
−
80
−
70
−
60
−50
−40
−30
−20
−10
0
10
0.28
0.22
0.30
0.20
0.32
0.18
0.34
0.16
0.36
0.14
0.38
0.12
0.40
0.10
0.42
0.08
0.44
0.06
0.46
0.04
0.21
0.19
0.17
0.15
0.13
0.11
0.09
0.07
0.05
0.03
0.29
0.31
0.33
0.35
0.37
0.39
0.41
0.43
0.45
0.47
0.02
0.48
0.01
0.49
0
0
0.49
0.01
0.48
0.02
0.47
0.03
0.46
0.04
0.45
0.05
0.44
0.06
0.43
0.07
0.42
0.08
0.41
0.09
0.40
0.10
0.39
0.11
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
0.34
0.16
0.33
0.17
0.32
0.18
0.31
0.19
0.30
0.20
0.29
0.21
0.28
0.22
0.27
0.23
0.26
0.24
0.25
0.25
0.24
0.26
0.23
0.27
W
A
V
E
L
E
N
G
T
H
S
T
O
W
A
R
D
L
O
A
D
W
A
V
E
L
E
N
G
T
H
S
T
O
W
A
R
D
G
E
N
E
R
A
T
O
R
2.0
50
10
6.0
4.0
3.0
1.8
1.6
1.4
1.2
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1.0
(
+JX
––––
Z
O
)
0.2
0.4
0.6
0.8
1.0
0.8
0.7
0.6
0.3
0.2
0.1
0.2
1.0
0.8
0.6
0.4
0.2
1.0
0.8
0.6
0.4
0.4
0.5
5.0
10
50
3.0
4.0
1.8
2.0
1.2
1.0
0.9
1.4
1.6
REACTANCE COMPONENT
(
R
––––
Z
O
)
NE
G
A
T
IVE
R
E
A
C
T
A
N
C
E
C
OM
P
O
N
E
N
T
P
OS
I
T
I
V
E
R
E
A
C
T
A
N
C
E
CO
M
P
O
N
E
N
T
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
10
20
0
(
−JX
––––
Z
O
)
20
20
0.2
0.4
0.6
0.8
1.0
S
21e
-FREQUENCY
S
11e
, S
22e
-FREQUENCY
CONDITION V
CE
= 10 V
I
C
= 50 mA
f = 0.1 to 1.0 GHz (STEP. 100 MHz)
CONDITION V
CE
= 10 V
I
C
= 50 mA
90°
0°
30°
−30°
60°
−60°
180°
150°
−150°
120°
−120°
−90°
10 15 205.0
1.0
0.7
0.5
0.3
0.2
0.1 GHz
S
12e
-FREQUENCY
CONDITION V
CE
= 10 V
I
C
= 50 mA
90°
0°
30°
−30°
60°
−60°
180°
150°
−150°
120°
−120°
−90°
0.1 0.150.200.05
0.1
0.7
0.5
0.3
0.2
0.1
GHz
1 GHz
1.0 GHz
0.1 GHz
0.1 GHz
S
11e
S
22e

2SC2954
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5