Page 1
®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
1N582x
I
F(AV)
V
RRM
T
j
V
(max) 0.475 V
F
3A
40 V
150°C
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
n
NEGLIGIBLE SWITCHING LOSSES
n
EXTREMELY FAST SWITCHING
n
LOW FORWARD VOLTAGE DROP
n
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Axial Power Schottky rectifier suited for Switch
Mode Power Supplies and high frequency DC to
DC converters. Packaged in DO-201AD these
devices are intended for use in low voltage, high
frequency inverters, free wheeling, polarity
protection and small battery chargers.
ABSOLUTE RATINGS (limiting values)
Symbol Parameter
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
Repetitive peak reverse voltage
RMS forward current
Average forward current TL= 100° C δ = 0.5
T
= 110° C δ = 0.5
L
Surge non repetitive forward
current
Repetitive peak avalanche
tp=10ms
Sinusoidal
tp = 1µs Tj = 25°C
power
T
stg
Tj
dV/dt
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
DO-201AD
Value
1N5820 1N5821 1N5822
Unit
20 30 40 V
10 A
3A
33 A
80 A
1700 W
- 65 to + 150 °C
150 °C
10000 V/µs
dPtot
*:
<
dTj Rth j a
July 2003 - Ed: 3A
thermal runaway condition for a diode on its own heatsink
−1()
1/5
Page 2
1N582x
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-a)
R
th (j-l)
Junction to ambient
Junction to lead
STATIC ELECTRICAL CHARACTERISTICS
Symbol Parameter Tests Conditions 1N5820 1N5821 1N5822 Unit
Lead length = 10 mm 80 ° C/W
Lead length = 10 mm 25 ° C/W
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25° CI
Tj=25°CV
Tj = 100° C
Tj=25°CI
R=VRRM
=3A
F
= 9.4 A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equations :
P=0.33xI
P=0.33xI
F(AV)
F(AV)
+ 0.035 I
+ 0.060 I
F2(RMS )
F2(RMS )
Fig. 1: Average forward power dissipation versus
average forward current (1N5820/1N5821).
PF(av)(W)
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
δ = 0.05
δ = 0.1
IF(av) (A)
for 1N5820 / 1N5821
for 1N5822
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2: Average forward power dissipation versus
average forward current (1N5822).
PF(av)(W)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
tp
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
222m A
20 20 20 mA
0.475 0.5 0.525 V
0.85 0.9 0.95 V
δ = 0.1
δ = 0.2
δ = 0.05
IF(av) (A)
δ
=tp/T
δ = 0.5
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P( t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.1 0.01 1
2/5
p
10 100 1000
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P( t )
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Page 3
1N582x
Fig. 5-1: Average forward current versus ambient
temperature (δ =0.5) (1N5820/1N5821).
IF(av)(A)
3.5
3.0
Rth(j-a)=Rth(j-l)=25°C/W
2.5
2.0
Rth(j-a)=80°C/W
1.5
1.0
0.5
0.0
0 25 50 75 100 125 150
δ
=tp/T
T
tp
Tamb(°C)
Fig. 6-1: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5820/1N5821).
IM(A)
16
14
12
10
8
6
4
IM
2
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Ta=25°C
Ta=75°C
Ta=100°C
Fig. 5-2: Average forward current versus ambient
temperature (δ =0.5) (1N5822).
IF(av)(A)
3.5
Rth(j-a)=Rth(j-l)=25°C/W
3.0
2.5
2.0
Rth(j-a)=80°C/W
1.5
1.0
T
0.5
tp
=tp/T
δ
0.0
0 25 50 75 100 125 150
Tamb(°C)
Fig. 6-2: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5822).
IM(A)
12
11
10
9
8
7
6
5
4
3
IM
2
1
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Ta=25°C
Ta=75°C
Ta=100°C
Fig. 7: Relative variation of thermal impedance
junction to ambient versus pulse duration (epoxy
printed circuit board, e(Cu)=35mm, recommended
pad layout).
Zth(j-a)/Rth(j-a)
1.0
0.8
0.6
δ = 0.5
0.4
δ
=tp/T
T
tp
δ = 0.2
0.2
δ = 0.1
Single pulse
0.0
1E-1 1E+0 1E+1 1E+2 1E+3
tp(s)
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
C(pF)
600
1N5820
100
1N5822
VR(V)
10
12 51 02 04 0
F=1MHz
Tj=25°C
1N5821
3/5
Page 4
1N582x
Fig. 9-1: Reverse leakage current versus reverse
voltage applied (typical values) (1N5820/1N5821).
IR(mA)
1E+2
1E+1
1E+0
Tj=125°C
Tj=100°C
1N5820
1N5821
1E-1
1E-2
1E-3
0 5 10 15 20 25 30
Tj=25°C
VR(V)
Fig. 10-1: Forward voltage drop versus forward
current (typical values) (1N5820/1N5821).
IFM(A)
50.00
Fig. 9-2: Reverse leakage current versus reverse
voltage applied (typical values) (1N5822).
IR(mA)
5E+1
1E+1
1E+0
Tj=125°C
Tj=100°C
1E-1
1E-2
1E-3
0 5 10 15 20 25 30 35 40
Tj=25°C
VR(V)
Fig. 10-2: Forward voltage drop versus forward
current (typical values) (1N5822).
IFM(A)
50.00
10.00
Tj=125°C
1.00
Tj=100°C
Tj=25°C
0.10
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
VFM(V)
Fig. 11: Non repetitive surge peak forward current
versus number of cycles.
IFSM(A)
100
80
60
40
F=50Hz
Tj initial=25°C
10.00
1.00
Tj=125°C
Tj=100°C
Tj=25°C
0.10
VFM(V)
0.01
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
20
Number of cycles
0
1 10 100 1000
4/5
Page 5
PACKAGE MECHANICAL DATA
DO-201AD plastic
1N582x
BA
note 1
ØD ØD
DIMENSIONS
REF.
Min. Max. Min. Max.
A 9.50 0.374
B 25.40 1.000
♠ C 5.30 0.209
♠ D 1.30 0.051
E 1.25 0.049
E
note 2
B
note 1
E
ØC
NOTES Millimeters Inches
1 - The lead diameter ♠ D is not controlled over zone E
2 - The minimum axial length within which the device may be
placed with its leads bent at right angles is 0.59"(15 mm)
Ordering type Marking Package Weight Base qty Delivery mode
1N582x Part number
DO-201AD 1.12g 600 Ammopack
cathode ring
1N582xRL Part number
DO-201AD 1.12g 1900 Tape & reel
cathode ring
n
EPOXY MEETS UL94,V0
Informationfurnished is believedtobe accurate andreliable. However, STMicroelectronics assumesno responsibility fortheconsequences of
useof such informationnor for anyinfringement of patents orother rights ofthird parties whichmayresult from itsuse. No licenseis granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
5/5