Danfoss FC 360 Design guide

ENGINEERING TOMORROW

Design Guide

VLT® AutomationDrive FC 360

vlt-drives.danfoss.com

Contents

Design Guide

 

 

Contents

1 Introduction

5

1.1 How to Read This Design Guide

5

1.2 De€nitions

6

1.3 Safety Precautions

9

1.4 Disposal Instruction

11

1.5 Document and Software Version

11

1.6 Approvals and Certi€cations

11

2 Product Overview

12

2.1 Enclosure Size Overview

12

2.2 Electrical Installation

13

2.2.1 Grounding Requirements

16

2.2.2 Control Wiring

18

2.3 Control Structures

20

2.3.1 Control Principle

20

2.3.2 Control Modes

20

2.3.3 FC 360 Control Principle

21

2.3.4 Control Structure in VVC+

22

2.3.5 Internal Current Control in VVC+ Mode

23

2.3.6 Local [Hand On] and Remote [Auto On] Control

23

2.4 Reference Handling

24

2.4.1 Reference Limits

25

2.4.2 Scaling of Preset References and Bus References

26

2.4.3 Scaling of Analog and Pulse References and Feedback

26

2.4.4 Dead Band Around Zero

27

2.5 PID Control

30

2.5.1 Speed PID Control

30

2.5.2 Process PID Control

33

2.5.3 Process Control Relevant Parameters

34

2.5.4 Example of Process PID Control

35

2.5.5 Process Controller Optimization

38

2.5.6 Ziegler Nichols Tuning Method

38

2.6 EMC Emission and Immunity

39

2.6.1 General Aspects of EMC Emission

39

2.6.2 EMC Emission Requirements

40

2.6.3 EMC Immunity Requirements

40

2.7 Galvanic Isolation

42

2.8 Earth Leakage Current

42

2.9 Brake Functions

43

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

1

Contents

VLT® AutomationDrive FC 360

2.9.1 Mechanical Holding Brake

43

2.9.2 Dynamic Braking

44

2.9.3 Brake Resistor Selection

44

2.10 Smart Logic Controller

45

2.11 Extreme Running Conditions

46

3 Type Code and Selection

48

3.1 Ordering

48

3.2 Ordering Numbers: Options, Accessories, and Spare Parts

49

3.3 Ordering Numbers: Brake Resistors

50

3.3.1 Ordering Numbers: Brake Resistors 10%

50

3.3.2 Ordering Numbers: Brake Resistors 40%

51

4 Speci€cations

52

4.1 Mains Supply 3x380–480 V AC

52

4.2 General Speci€cations

55

4.3 Fuses

59

4.4 Efficiency

60

4.5 Acoustic Noise

60

4.6 dU/dt Conditions

60

4.7 Special Conditions

62

4.7.1 Manual Derating

62

4.7.2 Automatic Derating

64

4.8 Enclosure Sizes, Power Ratings, and Dimensions

65

5 RS485 Installation and Set-up

67

5.1 Introduction

67

5.1.1 Overview

67

5.1.2 Network Connection

68

5.1.3 Hardware Set-up

68

5.1.4 Parameter Settings for Modbus Communication

68

5.1.5 EMC Precautions

69

5.2 FC Protocol

69

5.2.1 Overview

69

5.2.2 FC with Modbus RTU

69

5.3 Network Con€guration

69

5.4 FC Protocol Message Framing Structure

70

5.4.1 Content of a Character (byte)

70

5.4.2 Telegram Structure

70

5.4.3 Telegram Length (LGE)

70

5.4.4 Frequency Converter Address (ADR)

70

2

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Contents

Design Guide

 

 

5.4.5 Data Control Byte (BCC)

70

5.4.6 The Data Field

70

5.4.7 The PKE Field

71

5.4.8 Parameter Number (PNU)

71

5.4.9 Index (IND)

71

5.4.10 Parameter Value (PWE)

71

5.4.11 Data Types Supported by the Frequency Converter

72

5.4.12 Conversion

72

5.4.13 Process Words (PCD)

72

5.5 Examples

72

5.5.1 Writing a Parameter Value

72

5.5.2 Reading a Parameter Value

73

5.6 Modbus RTU

73

5.6.1 Prerequisite Knowledge

73

5.6.2 Overview

73

5.6.3 Frequency Converter with Modbus RTU

74

5.7 Network Con€guration

74

5.8 Modbus RTU Message Framing Structure

74

5.8.1 Introduction

74

5.8.2 Modbus RTU Telegram Structure

74

5.8.3 Start/Stop Field

75

5.8.4 Address Field

75

5.8.5 Function Field

75

5.8.6 Data Field

75

5.8.7 CRC Check Field

75

5.8.8 Coil Register Addressing

75

5.8.9 How to Control the Frequency Converter

78

5.8.10 Function Codes Supported by Modbus RTU

78

5.8.11 Modbus Exception Codes

78

5.9 How to Access Parameters

79

5.9.1 Parameter Handling

79

5.9.2 Storage of Data

79

5.9.3 IND (Index)

79

5.9.4 Text Blocks

79

5.9.5 Conversion Factor

79

5.9.6 Parameter Values

79

5.10 Examples

79

5.10.1 Read Coil Status (01 hex)

79

5.10.2 Force/Write Single Coil (05 hex)

80

5.10.3 Force/Write Multiple Coils (0F hex)

80

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

3

Contents

VLT® AutomationDrive FC 360

5.10.4 Read Holding Registers (03 hex)

81

5.10.5 Preset Single Register (06 hex)

81

5.10.6 Preset Multiple Registers (10 hex)

82

5.11 Danfoss FC Control Pro€le

82

5.11.1 Control Word According to FC Pro€le (8-10 Protocol = FC Pro€le)

82

5.11.2 Status Word According to FC Pro€le (STW)

84

5.11.3 Bus Speed Reference Value

85

6 Application Examples

86

6.1 Introduction

86

Index

90

4

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Introduction Design Guide

1 Introduction

1

1

 

 

 

 

 

1.1 How to Read This Design Guide

This design guide provides information on how to select, commission, and order a frequency converter. It provides information about mechanical and electrical installation.

The design guide is intended for use by quali€ed personnel.

Read and follow the design guide to use the frequency converter safely and professionally, and pay particular attention to the safety instructions and general warnings.

VLT® is a registered trademark.

VLT® AutomationDrive FC 360 Quick Guide provides the necessary information for getting the frequency converter up and running.

VLT® AutomationDrive FC 360 Programming Guide provides information on how to program and includes complete parameter descriptions.

FC 360 technical literature is also available online at www.danfoss.com/fc360.

The following symbols are used in this manual:

WARNING

Indicates a potentially hazardous situation that could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that may result in damage to equipment or property.

The following conventions are used in this manual:

Numbered lists indicate procedures.

Bullet lists indicate other information and description of illustrations.

Italicized text indicates:

-Cross-reference.

-Link.

-Footnote.

-Parameter name.

-Parameter group name.

-Parameter option.

All dimensions in drawings are in mm (inch).

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

5

Introduction

VLT® AutomationDrive FC 360

1

1

 

1.1.1 Abbreviations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternating current

AC

 

 

 

 

 

 

 

 

American wire gauge

AWG

 

 

 

 

 

 

 

 

Ampere/AMP

A

 

 

 

 

 

 

 

 

Automatic motor adaptation

AMA

 

 

 

 

 

 

 

 

Current limit

ILIM

 

 

 

 

 

 

 

 

Degrees Celsius

°C

 

 

 

Direct current

DC

 

 

 

 

 

 

 

 

Drive dependent

D-TYPE

 

 

 

 

 

 

 

 

Electromagnetic compatibility

EMC

 

 

 

 

 

 

 

 

Electronic thermal relay

ETR

 

 

 

 

 

 

 

 

Gram

g

 

 

 

 

 

 

 

 

Hertz

Hz

 

 

 

 

 

 

 

 

Horsepower

hp

 

 

 

 

 

 

 

 

Kilohertz

kHz

 

 

 

 

 

 

 

 

Local control panel

LCP

 

 

 

 

 

 

 

 

Meter

m

 

 

 

 

 

 

 

 

Millihenry inductance

mH

 

 

 

 

 

 

 

 

Milliampere

mA

 

 

 

 

 

 

 

 

Millisecond

ms

 

 

 

 

 

 

 

 

Minute

min

 

 

 

 

 

 

 

 

Motion control tool

MCT

 

 

 

 

 

 

 

 

Nanofarad

nF

 

 

 

 

 

 

 

 

Newton meter

Nm

 

 

 

 

 

 

 

 

Nominal motor current

IM,N

 

 

 

 

 

 

 

 

Nominal motor frequency

fM,N

 

 

 

 

 

 

 

 

Nominal motor power

PM,N

 

 

 

 

 

 

 

 

Nominal motor voltage

UM,N

 

 

 

 

 

 

 

 

Permanent magnet motor

PM motor

 

 

 

 

 

 

 

 

Protective extra low voltage

PELV

 

 

 

 

 

 

 

 

Printed circuit board

PCB

 

 

 

 

 

 

 

 

Rated inverter output current

IINV

 

 

 

 

 

 

 

 

Revolutions per minute

RPM

 

 

 

 

 

 

 

 

Regenerative terminals

Regen

 

 

 

 

 

 

 

 

Second

s

 

 

 

 

 

 

 

 

Synchronous motor speed

ns

 

 

 

 

 

 

 

 

Torque limit

TLIM

 

 

 

 

 

 

 

 

Volts

V

 

 

 

 

 

 

 

 

Maximum output current

IVLT,MAX

 

 

 

 

 

 

 

 

Rated output current supplied by the

IVLT,N

 

 

 

frequency converter

 

 

 

 

 

 

1.2 De€nitions

1.2.1 Frequency Converter

Coast

The motor shaft is in free mode. No torque on the motor.

IVLT,MAX

Maximum output current.

IVLT,N

Rated output current supplied by the frequency converter.

UVLT,MAX

Maximum output voltage.

1.2.2 Input

Control commands

Start and stop the connected motor with the LCP and digital inputs.

Functions are divided into 2 groups.

Functions in group 1 have higher priority than functions in group 2.

Group 1 Precise stop, coast stop, precise stop and coast stop, quick stop, DC braking, stop, and [OFF].

Group 2 Start, pulse start, start reversing, jog, freeze output, and [Hand On].

Table 1.1 Function Groups

6

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Introduction

Design Guide

1.2.3 Motor

Motor running

Torque generated on the output shaft and speed from 0 RPM to maximum speed on the motor.

fJOG

Motor frequency when the jog function is activated (via digital terminals or bus).

fM

Motor frequency.

fMAX

Maximum motor frequency.

fMIN

Minimum motor frequency.

fM,N

Rated motor frequency (nameplate data).

IM

Motor current (actual).

IM,N

Nominal motor current (nameplate data).

nM,N

Nominal motor speed (nameplate data).

ns

Synchronous motor speed.

ns

= 2 ×

Parameter 1 23

× 60

s

Parameter 1

 

 

 

 

39

 

 

 

 

 

nslip

Motor slip.

PM,N

Rated motor power (nameplate data in kW or hp).

TM,N

Rated torque (motor).

UM

Instantaneous motor voltage.

UM,N

Rated motor voltage (nameplate data).

Break-away torque

 

 

1

1

Torque

 

 

 

 

 

Pull-out

<![if ! IE]>

<![endif]>175ZA078.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RPM

Illustration 1.1 Break-away Torque

ηVLT

The efficiency of the frequency converter is de€ned as the ratio between the power output and the power input.

Start-disable command

A start-disable command belonging to the control commands in group 1. See Table 1.1 for more details.

Stop command

A stop command belonging to the control commands in group 1. See Table 1.1 for more details.

1.2.4 References

Analog reference

A signal transmitted to the analog inputs 53 or 54 can be voltage or current.

Binary reference

A signal transmitted via the serial communication port.

Preset reference

A de€ned preset reference to be set from -100% to +100% of the reference range. Selection of 8 preset references via the digital terminals. Selection of 4 preset references via the bus.

Pulse reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

RefMAX

Determines the relationship between the reference input at 100% full scale value (typically 10 V, 20 mA) and the resulting reference. The maximum reference value is set in parameter 3-03 Maximum Reference.

RefMIN

Determines the relationship between the reference input at 0% value (typically 0 V, 0 mA, 4 mA) and the resulting reference. The minimum reference value is set in

parameter 3-02 Minimum Reference.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

7

Introduction

VLT® AutomationDrive FC 360

1

1

1.2.5 Miscellaneous

 

 

 

Analog inputs

The analog inputs are used for controlling various functions of the frequency converter.

There are 2 types of analog inputs:

Current input: 0–20 mA and 4–20 mA.

Voltage input: 0–10 V DC.

Analog outputs

The analog outputs can supply a signal of 0–20 mA or 4– 20 mA.

Automatic motor adaptation, AMA

The AMA algorithm determines the electrical parameters for the connected motor at standstill.

Brake resistor

The brake resistor is a module capable of absorbing the brake power generated in regenerative braking. This regenerative brake power increases the DC-link voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

CT characteristics

Constant torque characteristics used for all applications such as conveyor belts, displacement pumps, and cranes.

Digital inputs

The digital inputs can be used for controlling various functions of the frequency converter.

Digital outputs

The frequency converter features 2 solid-state outputs that can supply a 24 V DC (maximum 40 mA) signal.

ETR

Electronic thermal relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

FC standard bus

Includes RS485 bus with FC protocol or MC protocol. See parameter 8-30 Protocol.

Initializing

If initializing is carried out (parameter 14-22 Operation Mode or 2-€nger reset), the frequency converter returns to the default setting.

Intermittent duty cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or nonperiodic duty.

LCP

The local control panel makes up a complete interface for control and programming of the frequency converter. The LCP is detachable. With the installation kit option, the LCP can be installed up to 3 m (9.8 ft) from the frequency converter in a front panel.

GLCP

The graphic local control panel (LCP 102) interface for control and programming of the frequency converter. The display is graphic and the panel is used to show process values. The GLCP has storing and copy functions.

NLCP

The numerical local control panel (LCP 21) interface for control and programming of the frequency converter. The display is numerical and the panel is used to show process values. The NLCP has storing and copy functions.

lsb

Least signi€cant bit.

msb

Most signi€cant bit.

MCM

Short for mille circular mil, an American measuring unit for cable cross-section. 1 MCM = 0.5067 mm2.

On-line/oƒ-line parameters

Changes to on-line parameters are activated immediately after the data value is changed. To activate changes to offline parameters, press [OK].

Process PID

The PID control maintains speed, pressure, and temperature by adjusting the output frequency to match the varying load.

PCD

Process control data.

Power cycle

Switch off the mains until the display (LCP) is dark, then turn power on again.

Power factor

The power factor is the relation between I1 and IRMS.

Power factor

 

 

 

3

x U x I

1

 

cos

ϕ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x U x IRMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For VLT

® AutomationDrive=

FC 360 frequency converters,

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

cosϕ1 = 1, therefore:

 

 

 

 

 

 

 

 

 

 

Power factor

 

 

I

1

x cos

ϕ1

 

 

 

I

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRMS

 

 

 

 

 

IRMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The power

factor indicates to which extent the frequency

 

=

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

converter imposes a load on the mains supply.

The lower the power factor, the higher the IRMS for the

same kW performance.

 

 

 

2

 

 

 

 

 

 

RMS

 

 

2

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

I

 

=

I

1 +

I

5

+

I

7

+ .. +

In

 

 

 

 

 

In

 

 

 

 

 

 

 

 

 

addition, a high power factor indicates that the different harmonic currents are low.

The built-in DC coils produce a high power factor, minimizing the imposed load on the mains supply.

Pulse input/incremental encoder

An external, digital pulse transmitter used for feeding back information on motor speed. The encoder is used in applications where great accuracy in speed control is required.

8

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Introduction

Design Guide

 

 

RCD

Residual current device.

Set-up

60° AVM

1 1

Refers to the switching pattern 60° asynchronous vector modulation.

Save parameter settings in 2 set-ups. Change between the 2 parameter set-ups and edit 1 set-up while another set-up is active.

SFAVM

Acronym describing the switching pattern stator fluxoriented asynchronous vector modulation.

Slip compensation

The frequency converter compensates for the motor slip by giving the frequency a supplement that follows the measured motor load, keeping the motor speed almost constant.

1.3 Safety Precautions

WARNING

The voltage of the frequency converter is dangerous whenever connected to mains. Incorrect installation of the motor, frequency converter or €eldbus may cause death, serious personal injury or damage to the equipment. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

Smart logic control (SLC)

The SLC is a sequence of user-de€ned actions executed when the smart logic controller evaluates the associated user-de€ned events as true (parameter group 13-** Smart Logic Control).

STW

Status word.

THD

Total harmonic distortion states the total contribution of harmonic distortion.

Thermistor

A temperature-dependent resistor placed where the temperature is monitored (frequency converter or motor).

Trip

A state entered in fault situations, for example if the frequency converter is subject to overvoltage or when it is protecting the motor, process, or mechanism. Restart is prevented until the cause of the fault has disappeared, and the trip state is canceled by activating reset or, sometimes, by being programmed to reset automatically. Do not use trip for personal safety.

Trip lock

Trip lock is a state entered in fault situations when the frequency converter is protecting itself and requiring physical intervention., An example causing a trip lock is the frequency converter being subject to a short circuit on the output. A locked trip can only be canceled by cutting off mains, removing the cause of the fault, and reconnecting the frequency converter. Restart is prevented until the trip state is canceled by activating reset or, sometimes, by being programmed to reset automatically. Do not use trip lock for personal safety.

VT characteristics

Variable torque characteristics used for pumps and fans.

VVC+

If compared with standard voltage/frequency ratio control, voltage vector control (VVC+) improves the dynamics and stability, both when the speed reference is changed and in relation to the load torque.

Safety Regulations

1.Always disconnect mains supply to the frequency converter before carrying out repair work. Check that the mains supply has been disconnected and observe the discharge time stated in Table 1.2 before removing motor and mains supply.

2.[Off/Reset] on the LCP does not disconnect the mains supply and must not be used as a safety switch.

3.Ground the equipment properly, protect the user against supply voltage, and protect the motor against overload in accordance with applicable national and local regulations.

4.Protection against motor overload is not included in the factory setting. If this function is desired, set parameter 1-90 Motor Thermal Protection to [4] ETR trip 1 or [3] ETR warning 1.

5.The frequency converter has more voltage sources than L1, L2 and L3, when load sharing (linking of DC intermediate circuit). Check that all voltage sources have been disconnected and that the necessary time has elapsed before commencing repair work.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

9

Introduction

VLT® AutomationDrive FC 360

1

1

Warning against unintended start

 

 

 

 

1.

The motor can be stopped with digital

 

 

 

 

 

commands, bus commands, references or a local

 

 

 

stop, while the frequency converter is connected

 

 

 

to mains. If personal safety considerations (e.g.

 

 

 

risk of personal injury caused by contact with

 

 

 

moving parts following an unintentional start)

 

 

 

make it necessary to ensure that no unintended

 

 

 

start occurs, these stop functions are not

 

 

 

sufficient. In such cases, disconnect the mains

 

 

 

supply.

 

 

2.

The motor may start while setting the

 

 

 

parameters. If this means that personal safety

 

 

 

may be compromised, motor starting must be

 

 

 

prevented, for instance by secure disconnection

 

 

 

of the motor connection.

 

 

3.

A motor that has been stopped with the mains

 

 

 

supply connected, may start if faults occur in the

 

 

 

electronics of the frequency converter, through

 

 

 

temporary overload or if a fault in the power

 

 

 

supply grid or motor connection is remedied. If

 

 

 

unintended start must be prevented for personal

 

 

 

safety reasons, the normal stop functions of the

 

 

 

frequency converter are not sufficient. In such

 

 

 

cases, disconnect the mains supply.

 

 

4.

In rare cases, control signals from, or internally

 

 

 

within, the frequency converter may be activated

 

 

 

in error, be delayed, or fail to occur entirely.

 

 

 

When used in situations where safety is critical,

 

 

 

e.g. when controlling the electromagnetic brake

 

 

 

function of a hoist application, do not rely on

 

 

 

these control signals exclusively.

WARNING

HIGH VOLTAGE

Touching the electrical parts may be fatal even after the equipment has been disconnected from mains.

Make sure that all voltage inputs have been disconnected, including load sharing (linkage of DC intermediate circuit), as well as motor connection for kinetic back up.

Systems where frequency converters are installed must, if necessary, be equipped with additional monitoring and protective devices according to valid safety regulations, such as laws on mechanical tools, regulations for the prevention of accidents, etc. Modi€cations to the frequency converters via the operating software are allowed.

NOTICE

Hazardous situations shall be identi€ed by the machine builder/integrator responsible for considering necessary preventive means. Additional monitoring and protective devices may be included, always according to valid national safety regulations, such as laws on mechanical tools and regulations for the prevention of accidents.

WARNING

DISCHARGE TIME

The frequency converter contains DC-link capacitors, which can remain charged even when the frequency converter is not powered. High voltage can be present even when the warning LED indicator lights are oƒ. Failure to wait the speci€ed time after power has been removed before performing service or repair work can result in death or serious injury.

Stop the motor.

Disconnect AC mains and remote DC-link power supplies, including battery back-ups, UPS, and DC-link connections to other frequency converters.

Disconnect or lock PM motor.

Wait for the capacitors to discharge fully. The minimum waiting time is speci€ed in Table 1.2 and is also visible on the product label on top of the frequency converter.

Before performing any service or repair work, use an appropriate voltage measuring device to make sure that the capacitors are fully discharged.

Voltage

Power range

Minimum waiting

time

[V]

[kW (hp)]

(minutes)

 

 

 

 

 

380–480

0.37–7.5 kW

4

(0.5–10 hp)

 

 

 

 

 

380–480

11–75 kW

15

(15–100 hp)

 

 

 

 

 

Table 1.2 Discharge Time

 

10

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Introduction

Design Guide

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Disposal Instruction

1.6.2 Low Voltage Directive

 

1

1

 

 

 

 

 

Equipment containing electrical components may not be disposed of together with domestic waste.

It must be collected separately with electrical and electronic waste according to local and currently valid legislation.

1.5 Document and Software Version

This manual is regularly reviewed and updated. All suggestions for improvement are welcome.

Edition

Remarks

Software version

 

 

 

MG06B5xx

Update due to new

1.8x

 

hardware and software

 

 

release.

 

 

 

 

1.6 Approvals and Certi€cations

Frequency converters are designed in compliance with the directives described in this section.

For more information on approvals and certi€cates, go to the download area at www.danfoss.com/fc360.

1.6.1 CE Mark

The CE mark (Conformité Européenne) indicates that the product manufacturer conforms to all applicable EU directives.

The EU directives applicable to the design and manufacture of drives are:

The Low Voltage Directive.

The EMC Directive.

The Machinery Directive (for units with an integrated safety function).

The CE mark is intended to eliminate technical barriers to free trade between the EC and EFTA states inside the ECU. The CE mark does not regulate the quality of the product. Technical speci€cations cannot be deduced from the CE mark.

Drives are classi€ed as electronic components and must be CE-labeled in accordance with the Low Voltage Directive. The directive applies to all electrical equipment in the 50– 1000 V AC and the 75–1500 V DC voltage ranges.

The directive mandates that the equipment design must ensure the safety and health of people and livestock, and the preservation of material by ensuring the equipment is properly installed, maintained, and used as intended.

Danfoss CE labels comply with the Low Voltage Directive, and Danfoss provides a declaration of conformity upon request.

1.6.3 EMC Directive

Electromagnetic compatibility (EMC) means that electromagnetic interference between pieces of equipment does not hinder their performance. The basic protection requirement of the EMC Directive 2014/30/EU states that devices that generate electromagnetic interference (EMI) or whose operation could be affected by EMI must be designed to limit the generation of electromagnetic interference and shall have a suitable degree of immunity to EMI when properly installed, maintained, and used as intended.

A drive can be used as stand-alone device or as part of a more complex installation. Devices in either of these cases must bear the CE mark. Systems must not be CE-marked but must comply with the basic protection requirements of the EMC directive.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

11

Product Overview

VLT® AutomationDrive FC 360

2 Product Overview

2 2

2.1 Enclosure Size Overview

Enclosure size depends on power range.

Enclosure size

J1

J2

J3

J4

 

<![if ! IE]>

<![endif]>130BA870.10

<![if ! IE]>

<![endif]>130BA809.10

<![if ! IE]>

<![endif]>130BA810.10

<![if ! IE]>

<![endif]>130BA810.10

Enclosure

IP20

IP20

IP20

IP20

protection

 

 

 

 

High overload

 

 

 

 

rated power -

0.37–2.2 kW/0.5–3 hp

3.0–5.5 kW/4.0–7.5 hp

 

11–15 kW/15–20 hp

maximum

7.5 kW/10 hp (380–480 V)

(380–480 V)

(380–480 V)

(380–480 V)

160%

 

 

 

 

 

overload1)

 

 

 

 

Enclosure size

J5

J6

J7

 

 

<![if ! IE]>

<![endif]>130BA810.10

<![if ! IE]>

<![endif]>130BA826.10

<![if ! IE]>

<![endif]>130BA826.10

 

Enclosure

IP20

IP20

IP20

 

protection

 

 

 

 

 

High overload

 

 

 

 

rated power -

18.5–22 kW/25–30 hp

30–45 kW/40–60 hp

55–75 kW/75–100 hp

 

maximum

 

(380–480 V)

(380–480 V)

(380–480 V)

 

160%

 

 

 

 

 

overload1)

 

 

 

 

Table 2.1 Enclosure Sizes

1) Sizes 11–75 kW (15–100 hp) normal overload type: 110% overload 1 minute. Sizes 0.37–7.5 kW (0.5–10 hp) high overload type: 160% overload 1 minute. Sizes 11–22 kW (15–30 hp) high overload type: 150% overload 1 minute.

Sizes 30–75 kW (40–100 hp) high overload type: 150% overload 1 minute.

12

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

 

 

2.2 Electrical Installation

This section describes how to wire the frequency converter.

 

RFI

3)

 

 

 

 

 

 

 

 

 

 

 

 

3 phase

91

(L1)

 

 

 

 

(U) 96

 

92

(L2)

 

 

 

 

(V) 97

 

power

 

 

 

 

 

93

(L3)

 

 

 

 

(W) 98

 

input

 

 

 

 

 

95

PE

 

 

 

 

(PE) 99

 

 

 

 

 

 

Motor

 

 

 

 

 

 

 

 

 

 

 

Switch mode

 

(-UDC) 88

 

 

 

 

power supply

1)

 

 

 

 

10 V DC

 

24 V DC

 

(+UDC) 89

Brake

 

 

 

15 mA

 

100 mA

 

 

resistor

 

50

(+10 V OUT)

+ -

+

-

 

 

+10 V DC

 

(BR) 81 5)

 

 

 

 

 

 

 

 

0-10 V DC

53

(A IN)

 

 

 

 

 

 

 

0/4-20 mA

 

 

 

 

 

 

 

 

 

0-10 V DC

54

(A IN)

 

 

 

 

 

 

 

0/4-20 mA

 

 

 

 

 

 

 

 

 

 

55

(COM A IN/OUT)

 

 

 

 

Relay 1

 

 

 

 

 

 

 

03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02

250 V AC, 3 A

Analog

42 (A OUT)

 

 

 

 

 

 

 

 

 

 

 

 

 

output

 

 

 

 

 

 

 

01

 

0/4-20 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 (A OUT)

 

 

 

 

 

 

 

 

12

(+24 V OUT)

 

 

 

 

Relay 2

2)

 

 

 

 

 

 

 

 

 

 

 

 

 

P 5-00

 

 

 

06

250 V AC, 3 A

 

 

 

 

24 V (NPN)

 

 

 

05

 

18

(D IN)

 

 

 

 

 

 

 

0 V (PNP)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 V (NPN)

 

 

 

04

 

 

19

(D IN)

 

 

 

 

 

 

 

 

0 V (PNP)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

(COM D IN)

 

 

4)

 

 

 

 

 

 

 

 

24 V (NPN)

 

ON=Terminated

 

 

27

(D IN/OUT)

 

<![if ! IE]>

<![endif]>2 1

<![if ! IE]>

<![endif]>ON

 

 

24 V

0 V (PNP)

OFF=Open

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5V

 

 

 

 

0 V

29

(D IN/OUT)

 

24 V

 

0 V

31 (D IN)

32 (D IN)

33 (D IN)

24 V (NPN)

 

 

 

 

0 V (PNP)

 

S801

0V

 

 

 

 

 

RS485

(N RS485)

69

RS485

 

Interface

 

 

 

 

 

 

24 V (NPN)

 

(P RS485)

68

 

 

 

 

 

0 V (PNP)

0 V

(COM RS485) 61

 

 

 

24 V (NPN)

 

 

 

 

0 V (PNP)

 

 

 

(PNP) = Source

24 V (NPN)

 

 

 

(NPN) = Sink

 

 

 

 

0 V (PNP)

 

 

 

 

Illustration 2.1 Basic Wiring Schematic Drawing

2 2

<![if ! IE]>

<![endif]>130BC438.19

A=Analog, D=Digital

1)Built-in brake chopper available from J1–J5.

2)Relay 2 is 2-pole for J1–J3 and 3-pole for J4–J7. Relay 2 of J4–J7 with terminals 4, 5, and 6 has same NO/NC logic as relay 1. Relays are pluggable in J1–J5 and fixed in J6–J7.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

13

Product Overview

VLT® AutomationDrive FC 360

3)Single DC choke in J1–J5; dual DC choke in J6–J7.

4)Switch S801 (bus terminal) can be used to enable termination on the RS485 port (terminals 68 and 69).

2

2

5) No BR for J6–J7.

 

14

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Danfoss FC 360 Design guide

Product Overview

Design Guide

 

 

1

2

3

4

L1

L2

L3

PE

5

 

 

 

6

<![if ! IE]>

<![endif]>e30bf228.11

 

 

 

 

 

7

2

2

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

9

 

 

 

 

 

 

10

 

 

 

 

 

 

11

 

 

 

 

 

 

12

 

 

 

 

 

90

 

 

 

 

 

 

 

13

 

 

 

 

 

 

14

 

 

 

 

 

 

15

 

 

 

4

 

u

 

 

 

 

 

 

16

 

 

 

 

 

v

 

 

 

 

4

w

 

 

 

 

 

PE

 

 

 

 

 

 

17

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

1

PLC

10

Mains cable (unshielded)

 

 

 

 

2

Minimum 16 mm2 (6 AWG) equalizing cable

11

Output contactor, and more.

3

Control cables

12

Cable insulation stripped

 

 

 

 

4

Minimum 200 mm (7.87 in) between control cables, motor

13

Common ground busbar. Follow local and national

 

cables, and mains cables.

 

requirements for cabinet grounding.

 

 

 

 

5

Mains supply

14

Brake resistor

 

 

 

 

6

Bare (unpainted) surface

15

Metal box

 

 

 

 

7

Star washers

16

Connection to motor

 

 

 

 

8

Brake cable (shielded)

17

Motor

 

 

 

 

9

Motor cable (shielded)

18

EMC cable gland

 

 

 

 

Illustration 2.2 Typical Electrical Connection

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

15

Product Overview

VLT® AutomationDrive FC 360

WARNING

EQUIPMENT HAZARD

2 2 Rotating shafts and electrical equipment can be hazardous. It is important to protect against electrical hazards when applying power to the unit. All electrical work must conform to national and local electrical codes. Installation, start up, and maintenance must be performed only by trained and quali€ed personnel. Failure to follow these guidelines could result in death or serious injury.

WARNING

WIRING ISOLATION

Run input power, motor wiring, and control wiring in 3 separate metallic conduits, or use separated shielded cables for high-frequency noise isolation. Failure to isolate power, motor, and control wiring could result in less than optimum frequency converter and associated equipment performance.

Run motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even with the equipment turned oƒ and locked out. Failure to run output motor cables separately or use shielded cables could result in death or serious injury.

Run output motor cables separately.

Use shielded cables.

Lock out all frequency converters simultaneously.

Wire type and ratings

All wiring must comply with local and national regulations regarding cross-section and ambient temperature requirements.

Danfoss recommends that all power connections are made with a minimum 75 °C (167 °F) rated copper wire.

See chapter 4 Specifications for recommended wire sizes.

2.2.1 Grounding Requirements

WARNING

GROUNDING HAZARD!

For operator safety, a certi€ed electrical installer should ground the frequency converter in accordance with national and local electrical codes as well as instructions contained within this manual. Ground currents are higher than 3.5 mA. Failure to ground the frequency converter properly could result in death or serious injury.

Establish proper protective grounding for equipment with ground currents higher than 3.5 mA. See chapter 2.8 Earth Leakage Current for details.

A dedicated ground wire is required for input power, motor power, and control wiring.

Use the clamps provided with the equipment for proper ground connections.

Do not ground 1 frequency converter to another in a “daisy chain” fashion (see Illustration 2.3).

Keep the ground wire connections as short as possible.

Use high-strand wire to reduce electrical noise.

Follow motor manufacturer wiring requirements.

<![if ! IE]>

<![endif]>130BC500.10

 

 

 

 

 

 

 

 

 

FC 1

 

 

FC 2

 

 

FC 3

 

 

 

 

 

 

 

 

PE

 

 

 

 

 

 

 

 

 

FC 1

 

 

FC 2

 

 

FC 3

 

 

 

 

 

 

 

 

PE

Illustration 2.3 Grounding Principle

16

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

WARNING

INDUCED VOLTAGE

Run output motor cables from multiple frequency converters separately. Induced voltage from output motor cables run together can charge equipment capacitors even when the equipment is turned oƒ and locked out. Failure to run output motor cables separately could result in death or serious injury.

Grounding clamps are provided for motor wiring (see

Illustration 2.4).

Do not install power factor correction capacitors between the frequency converter and the motor.

Do not wire a starting or pole-changing device between the frequency converter and the motor.

Follow motor manufacturer wiring requirements.

All frequency converters must be used with an isolated input source and with ground reference power lines. When supplied from an isolated mains source (IT mains or floating delta) or TT/TN-S mains with a grounded leg (grounded delta), set parameter 14-50 RFI Filter to OFF (enclosure sizes J6–J7) or remove the RFI screw (enclosure sizes J1–J5). When off, the internal RFI €lter capacitors between the chassis and the intermediate circuit are isolated to avoid damage to the intermediate circuit and reduce ground capacity currents in accordance with IEC 61800-3.

Do not install a switch between the frequency converter and the motor in IT mains.

<![if ! IE]>

<![endif]>130BC501.10

2

2

 

<![if ! IE]>

<![endif]>04 05

 

 

<![if ! IE]>

<![endif]>01 02 03

 

 

Illustration 2.4 Mains, Motor, and Ground Connections for

Enclosure Sizes J1–J5 (Taking J2 as an Example)

<![if ! IE]>

<![endif]>130BD648.11

Illustration 2.5 Mains, Motor, and Ground Connections for

Enclosure Sizes J6–J7 (Taking J7 as an Example)

Illustration 2.4 shows mains input, motor, and grounding for enclosure sizes J1–J5. Illustration 2.5 shows mains input, motor, and grounding for enclosure sizes J6–J7. Actual con€gurations vary with unit types and optional equipment.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

17

Product Overview

VLT® AutomationDrive FC 360

2.2.2 Control Wiring

2

2

Access

 

 

 

 

 

 

Remove the cover plate with a screwdriver. See

 

 

 

Illustration 2.6.

<![if ! IE]>

<![endif]>130BC504.11

Illustration 2.6 Control Wiring Access for Enclosure Sizes J1–J7

Control Terminal Types

Illustration 2.7 shows the frequency converter control terminals. Terminal functions and default settings are summarized in Table 2.2.

<![if ! IE]>

<![endif]>130BC505.12

12

18

19

 

 

 

 

 

 

 

 

 

 

 

27

 

 

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

33

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

53

 

 

 

 

 

 

 

 

 

 

 

54

 

 

 

 

 

 

 

 

 

 

 

55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

45

 

Illustration 2.7 Control Terminal Locations

See chapter 4.2 General Specifications for terminal ratings details.

Terminal

Parameter

Default

 

Description

setting

 

 

 

 

 

 

 

 

 

 

 

Digital I/O, Pulse I/O, Encoder

 

 

 

 

 

 

 

 

 

 

24 V DC supply

 

 

 

 

voltage.

12

+24 V DC

 

Maximum

 

output current is

 

 

 

 

 

 

 

 

100 mA for all

 

 

 

 

24 V loads.

 

 

 

 

 

 

Parameter 5-10 Ter

 

 

 

18

minal 18 Digital

[8] Start

 

 

 

Input

 

 

Digital inputs.

 

 

 

 

19

Parameter 5-11 Ter

[10]

 

 

 

minal 19 Digital

Reversing

 

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

31

Parameter 5-16 Ter

[0] No

 

Digital input

minal 31 Digital

operation

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

32

Parameter 5-14 Ter

[0] No

 

Digital input, 24

minal 32 Digital

operation

 

V encoder.

 

Input

 

 

 

 

Terminal 33 can

 

 

 

 

 

Parameter 5-15 Ter

[0] No

 

be used for

33

minal 33 Digital

 

 

pulse input.

operation

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 5-12 Ter

 

 

 

 

minal 27 Digital

 

 

Selectable for

27

Input

DI [2] Coast

 

either digital

Parameter 5-30 Ter

inverse

 

input, digital

 

 

 

minal 27 Digital

DO [0] No

 

output or pulse

 

Output

operation

 

output. Default

 

 

 

 

setting is digital

 

Parameter 5-13 Ter

DI [14] Jog

 

 

minal 29 Digital

DO [0] No

 

input.

29

Input

operation

 

Terminal 29 can

Parameter 5-31 Ter

 

 

be used for

 

 

 

 

minal 29 Digital

 

 

pulse input.

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

Common for

 

 

 

 

digital inputs

20

 

 

and 0 V

 

 

 

 

potential for 24

 

 

 

 

V supply.

 

 

 

 

 

 

Analog inputs/outputs

 

 

 

 

 

 

 

Parameter 6-91 Ter

[0] No

 

Programmable

 

 

analog output.

42

minal 42 Analog

operation

 

 

The analog

 

Output

 

 

 

 

 

 

 

signal is 0–20

 

 

 

 

 

 

 

 

 

 

 

 

mA or 4–20 mA

 

Parameter 6-71 Ter

[0] No

 

at a maximum of

45

minal 45 Analog

 

500 Ω. Can also

operation

 

 

Output

 

be con€gured as

 

 

 

 

 

 

 

 

 

 

 

digital outputs

 

 

 

 

 

18

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

 

 

Terminal

Parameter

 

Default

Description

 

setting

 

 

 

 

 

 

 

 

 

 

 

 

 

10 V DC analog

 

 

 

 

supply voltage.

 

 

 

 

15 mA maximum

50

 

+10 V DC

commonly used

 

 

 

 

for potenti-

 

 

 

 

ometer or

 

 

 

 

thermistor.

 

 

 

 

 

53

6-1* parameter

 

Reference

Analog input.

group

 

 

 

 

Selectable for

 

 

 

 

54

6-2* parameter

 

Feedback

voltage or

group

 

current.

 

 

 

 

 

 

 

 

55

 

 

Common for

 

 

 

 

analog input

 

 

 

 

 

Serial communication

 

 

 

 

 

 

 

 

 

 

Integrated RC

 

 

 

 

Filter for shield.

 

 

 

 

ONLY for

61

 

 

connecting the

 

 

 

 

screen when

 

 

 

 

experiencing

 

 

 

 

EMC problems.

 

 

 

 

 

 

8-3* parameter

 

 

RS485 interface.

68 (+)

 

 

A control card

group

 

 

 

 

 

switch is

 

 

 

 

 

8-3* parameter

 

 

provided for

69 (-)

 

 

termination

group

 

 

 

 

 

resistance.

 

 

 

 

 

 

 

 

 

Relays

 

 

 

 

 

 

 

 

 

 

Form C relay

 

 

 

 

output. These

 

 

 

[0] No

relays are in

01, 02, 03

5-40 [0]

 

various locations

 

operation

 

 

 

depending upon

 

 

 

 

 

 

 

 

the frequency

 

 

 

 

converter con€g-

 

 

 

 

uration and size.

 

 

 

 

 

 

 

 

Usable for AC or

 

 

 

 

DC voltage and

 

 

 

 

resistive or

04, 05, 06

5-40 [1]

 

[0] No

inductive loads.

 

operation

RO2 in J1–J3

 

 

 

 

 

 

 

enclosure is 2-

 

 

 

 

pole, only

 

 

 

 

terminals 04 and

 

 

 

 

05 are available

 

 

 

 

 

Table 2.2 Terminal Descriptions

 

 

Control terminal functions

 

 

 

Frequency converter functions are commanded by

 

 

 

receiving control input signals.

2

 

2

Program each terminal for the function it

 

 

 

 

 

supports in the parameters associated with that

 

 

 

 

 

 

 

 

terminal.

 

 

 

Con€rm that the control terminal is programmed

 

 

 

 

for the correct function. See chapter Local Control

 

 

 

 

Panel and Programming in the quick guide for

 

 

 

 

details on accessing parameters and

 

 

 

 

programming.

 

 

 

The default terminal programming initiates

 

 

 

 

frequency converter functioning in a typical

 

 

 

 

operational mode.

 

 

 

Using shielded control cables

The preferred method in most cases is to secure control and serial communication cables with shielding clamps provided at both ends to ensure the best possible high frequency cable contact.

If the ground potential between the frequency converter and the PLC is different, electric noise may occur that disturbs the entire system. Solve this problem by €tting an equalizing cable as close as possible to the control cable. Minimum cable cross section: 16 mm2 (6 AWG).

PLC

 

 

FC

<![if ! IE]>

<![endif]>130BB922.12

PE

PE

<10 mm

 

 

 

PE

PE

 

 

 

1

 

 

 

 

2

 

 

 

1Minimum 16 mm2 (6 AWG)

2Equalizing cable

Illustration 2.8 Shielding Clamps at Both Ends

50/60 Hz ground loops

With very long control cables, ground loops may occur. To eliminate ground loops, connect 1 end of the screen-to- ground with a 100 nF capacitor (keeping leads short).

PE 100nF

PE <10 mm

FC

<![if ! IE]>

<![endif]>130BB609.12

PLC

 

 

Illustration 2.9 Connection with a 100 nF Capacitor

Avoid EMC noise on serial communication

This terminal is connected to ground via an internal RC link. Use twisted-pair cables to reduce interference between conductors. The recommended method is shown in Illustration 2.10.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

19

Product Overview

VLT® AutomationDrive FC 360

 

 

FC

 

FC

<![if ! IE]>

<![endif]>130BB923.12

 

 

69

 

69

2

2

68

 

68

 

61

 

61

 

PE

PE <10 mm

 

 

 

 

PE

PE

 

 

 

 

 

1

 

 

 

 

 

2

 

 

1Minimum 16 mm2 (6 AWG)

2Equalizing cable

Illustration 2.10 Twisted-pair Cables

Alternatively, the connection to terminal 61 can be omitted.

FC

 

FC

<![if ! IE]>

<![endif]>130BB924.12

69

 

68

68

 

69

 

PE

PE <10 mm

 

 

PE

PE

 

 

 

1

 

 

 

2

 

 

1Minimum 16 mm2 (6 AWG)

2Equalizing cable

Illustration 2.11 Twisted-pair Cables without Terminal 61

2.3 Control Structures

2.3.1 Control Principle

A frequency converter recti€es AC voltage from mains into DC voltage. Then the DC voltage is converted into an AC current with a variable amplitude and frequency.

The motor is supplied with variable voltage/current and frequency, enabling in€nitely variable speed control of 3- phased standard AC motors and permanent magnet synchronous motors.

2.3.2 Control Modes

The frequency converter is capable of controlling either the speed or the torque on the motor shaft. Setting

parameter 1-00 Configuration Mode determines the type of control.

Speed control

There are 2 types of speed control:

Speed open-loop control, which does not require any feedback from the motor (sensorless).

Speed closed-loop PID control, which requires a speed feedback to an input. A properly optimized speed-closed loop control has higher accuracy than a speed open-loop control.

Select which input to use as speed PID feedback in parameter 7-00 Speed PID Feedback Source.

Torque control

The torque control function is used in applications where the torque on motor output shaft is controlling the application as tension control. Torque control can be selected in parameter 1-00 Configuration Mode. Torque setting is done by setting an analog, digital, or bus controlled reference. When running torque control, it is recommended to run a full AMA procedure, because correct motor data is important in achieving optimal performance.

Closed loop in VVC+ mode. This function is used in applications with low to medium dynamic variation of shaft, and offers excellent performance in all 4 quadrants and at all motor speeds. The speed feedback signal is mandatory. It is recommended to use MCB102 option card. Ensure the encoder resolution is at least 1024 PPR, and the shield cable of the encoder is well grounded, because the accuracy of the speed feedback signal is important. Tune

parameter 7-06 Speed PID Lowpass Filter Time to get the best speed feedback signal.

Open loop in VVC+ mode. The function is used in mechanically robust applications, but the accuracy is limited. Open-loop torque function works for 2 directions. The torque is calculated on the basis of the internal current measurement in the frequency converter.

Speed/torque reference

The reference to these controls can be either a single reference or the sum of various references including relatively scaled references. Reference handling is explained in detail in chapter 2.4 Reference Handling.

20

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview Design Guide

2.3.3 FC 360 Control Principle

VLT® AutomationDrive FC 360 is a general-purpose frequency converter for variable speed applications. The control principle

2

2

is based on Voltage Vector Control+.

0.37–22 kW (0.5–30 hp)

FC 360 0.37–22 kW (0.5–30 hp) frequency converters can handle asynchronous motors and permanent magnet synchronous motors up to 22 kW.

The current-sensing principle in FC 360 0.37–22 kW (0.5–30 hp) frequency converters is based on the current measurement by a resistor in the DC link. The ground fault protection and short-circuit behavior are handled by the same resistor.

Brake resistor

R+

R-

Load sharing + 82

81

89(+)

 

L1 91

 

L2 92

 

Inrush

 

L3 93

 

RFI switch

Load sharing - 88(-)

<![if ! IE]>

<![endif]>130BD974.10

U 96

 

V 97

M

W 98

 

Illustration 2.12 Control Diagram for FC 360 0.37–22 kW (0.5–30 hp)

30–75 kW (40–100 hp)

FC 360 30–75 kW (40–100 hp) frequency converters can handle asynchronous motors only.

The current-sensing principle in FC 360 30–75 kW (40–100 hp) frequency converters is based on the current measurement in the motor phases.

The ground fault protection and short-circuit behavior on FC 360 30–75 kW (40–100 hp) frequency converters are handled by the 3 current transducers in the motor phases.

L1 91

L2 92

L3 93

Load sharing + 89(+)

 

 

 

 

 

 

R inr

 

 

Inrush

 

88(-) Load sharing -

<![if ! IE]>

<![endif]>130BD975.10

U 96

 

V 97

M

W 98

 

P 14-50

Illustration 2.13 Control Diagram for FC 360 30–75 kW (40–100 hp)

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

21

Product Overview

VLT® AutomationDrive FC 360

2.3.4 Control Structure in VVC+

2 2

P 1-00

P 4-14 Con g. mode Motor speed

high limit (Hz) High

Ref.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

Low

 

 

 

 

 

 

 

 

 

P 4-12

 

 

 

S

 

Process

 

 

Motor speed

 

 

_

 

 

 

 

 

low limit (Hz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P 7-20 Process feedback 1 source

P 7-22 Process feedback 2 source

 

 

P 4-19

 

<![if ! IE]>

<![endif]>130BD371.10

P 1-00

 

Max. output freq.

 

 

 

 

 

 

Con g. mode

 

+f max.

 

 

 

 

P 3-**

 

Motor

 

 

 

controller

 

 

 

 

 

 

Ramp

 

-f max.

 

 

 

 

 

 

 

 

 

 

P 4-19

 

 

 

 

Max. output freq.

 

 

P 7-0*

 

+f max.

+

S

Speed

Motor

 

_

PID

controller

 

 

 

 

 

 

 

 

 

-f max.

 

 

P 7-00 Speed PID

 

 

feedback source

Illustration 2.14 Control Structure in VVC+ Open-loop Con€gurations and Closed-loop Con€gurations

In the con€guration shown in Illustration 2.14, parameter 1-01 Motor Control Principle is set to [1] VVC+ and

parameter 1-00 Configuration Mode is set to [0] Speed open loop. The resulting reference from the reference handling system is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The output of the motor control is then limited by the maximum frequency limit.

If parameter 1-00 Configuration Mode is set to [1] Speed closed loop, the resulting reference is passed from the ramp limitation and speed limitation into a speed PID control. The speed PID control parameters are in parameter group 7-0* Speed PID Ctrl. The resulting reference from the speed PID control is sent to the motor control limited by the frequency limit.

Select [3] Process in parameter 1-00 Configuration Mode to use the process PID control for closed-loop control of speed or pressure in the controlled application. The process PID parameters are in parameter groups 7-2* Process Ctrl. Feedb and 7-3* Process PID Ctrl.

22

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

 

 

2.3.5Internal Current Control in VVC+ Mode

The frequency converter features an integral current limit

2

2

control. This feature is activated when the motor current,

 

 

and thus the torque, is higher than the torque limits set in

 

 

parameter 4-16

Torque Limit Motor Mode,

 

 

parameter 4-17

Torque Limit Generator Mode, and

 

 

parameter 4-18

Current Limit.

 

 

When the frequency converter is at the current limit during motor operation or regenerative operation, the frequency converter tries to get below the preset torque limits as quickly as possible without losing control of the motor.

2.3.6Local [Hand On] and Remote [Auto On] Control

Operate the frequency converter manually via the local control panel (LCP) or remotely via analog/digital inputs or €eldbus.

Start and stop the frequency converter pressing the [Hand

On] and [Off/Reset] keys on the LCP. Set-up is required:

Parameter 0-40 [Hand on] Key on LCP.

Parameter 0-44 [Off/Reset] Key on LCP.

Parameter 0-42 [Auto on] Key on LCP.

Reset alarms via the [Off/Reset] key or via a digital input, when the terminal is programmed to Reset.

Hand

O

Auto

Reset

On

On

 

 

<![if ! IE]>

<![endif]>e30bp046.12

Illustration 2.15 LCP Control Keys

Local reference forces the con€guration mode to open loop, independent of the setting in parameter 1-00 Configuration Mode.

Local reference is restored at power-down.

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

23

Product Overview VLT® AutomationDrive FC 360

2.4 Reference Handling

2 2 Local reference

The local reference is active when the frequency converter is operated with [Hand On] active. Adjust the reference by []/[] and [◄/[►].

Remote reference

The reference handling system for calculating the remote reference is shown in Illustration 2.16.

<![if ! IE]>

<![endif]>3-18

<![if ! IE]>

<![endif]>scaling ref.

<![if ! IE]>

<![endif]>P

<![if ! IE]>

<![endif]>Relative

<![if ! IE]>

<![endif]>Preset ref.

<![if ! IE]>

<![endif]>P 3-10

<![if ! IE]>

<![endif]>P 3-15

<![if ! IE]>

<![endif]>Ref.resource 1

<![if ! IE]>

<![endif]>P 3-16

<![if ! IE]>

<![endif]>resource 2

 

<![if ! IE]>

<![endif]>Ref.

<![if ! IE]>

<![endif]>P 3-17

<![if ! IE]>

<![endif]>resource 3

 

<![if ! IE]>

<![endif]>Ref.

No function

Analog ref.

Pulse ref.

Local bus ref.

DigiPot

P 3-14

Preset relative ref.

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

No function

Analog ref.

Pulse ref.

Local bus ref.

DigiPot

No function

Analog ref.

Pulse ref.

Local bus ref.

DigiPot

No function

Analog ref.

Pulse ref.

Local bus ref.

DigiPot

<![if ! IE]>

<![endif]>130BD374.10

P 3-04

(0)

(1)

D1

P 5-1x(15)

Preset '1'

External '0'

200%

-200%

P 3-00

P 1-00

Ref./feedback range

Con guration mode

P 5-1x(19)/P 5-1x(20)

 

 

Speed

Freeze ref./Freeze output

open/closed loop

 

 

P 5-1x(28)/P 5-1x(29)

-max ref./

 

+max ref.

 

Input command:

100%

 

 

 

Catch up/ slow down

 

 

 

 

-100%

Y

Relative

Catch up/

 

 

 

X

X+X*Y

slow

 

/100

down

 

 

 

 

 

 

 

 

 

max ref.

 

 

P 3-12

%

 

 

 

 

Catchup Slowdown

 

 

 

value

%

 

 

 

 

 

 

min ref.

 

 

±100%

 

 

 

Freeze ref.

 

 

 

&

 

 

 

increase/

 

 

 

decrease

 

 

 

ref.

 

 

 

P 5-1x(21)/P 5-1x(22)

 

 

 

Speed up/ speed down

P 16-02

Ref. in %

 

 

Scale to

 

 

 

 

Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

Torque

 

P 16-01

 

 

 

 

 

 

 

 

Remote

 

 

Scale to

 

ref.

 

 

Nm

 

 

 

 

 

 

 

 

 

Process

 

 

 

 

 

 

 

 

 

Scale to

 

 

 

 

process

 

 

 

 

 

 

 

 

unit

 

 

 

 

 

 

 

Illustration 2.16 Remote Reference

24

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

The remote reference is calculated once in every scan interval and initially consists of 2 types of reference inputs:

1.X (the external reference): A sum (see parameter 3-04 Reference Function) of up to 4 externally selected references, comprising any combination (determined by the setting of parameter 3-15 Reference 1 Source,

parameter 3-16 Reference 2 Source, and parameter 3-17 Reference 3 Source) of a €xed

preset reference (parameter 3-10 Preset Reference), variable analog references, variable digital pulse references, and various €eldbus references in any unit the frequency converter is monitoring ([Hz], [RPM], [Nm], and so on).

2.Y (the relative reference): A sum of 1 €xed preset reference (parameter 3-14 Preset Relative Reference) and 1 variable analog reference

(parameter 3-18 Relative Scaling Reference Resource) in [%].

The 2 types of reference inputs are combined in the following formula:

Remote reference=X+X*Y/100%.

If relative reference is not used, set parameter 3-18 Relative Scaling Reference Resource to [0] No function and parameter 3-14 Preset Relative Reference to 0%. The digital inputs on the frequency converter can activate both the catch up/slow down function and the freeze reference function. The functions and parameters are described in the VLT® AutomationDrive FC 360 Programming Guide.

The scaling of analog references is described in parameter groups 6-1* Analog Input 53 and 6-2* Analog Input 54, and the scaling of digital pulse references is described in parameter group 5-5* Pulse Input.

Reference limits and ranges are set in parameter group 3-0* Reference Limits.

2.4.1 Reference Limits

Parameter 3-00 Reference Range, parameter 3-02 Minimum Reference, and parameter 3-03 Maximum Reference de€ne the allowed range of the sum of all references. The sum of all references is clamped when necessary. The relation between the resulting reference (after clamping) and the sum of all references are shown in Illustration 2.17 and

Illustration 2.18.

P 3-00 Reference Range= [0] Min-Max

<![if ! IE]>

<![endif]>130BA184.10

Resulting reference

 

 

 

 

 

 

P 3-03

 

 

 

 

 

 

Forward

 

 

P 3-02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sum of all

 

 

 

 

references

-P 3-02

 

 

 

 

 

 

 

Reverse

 

 

-P 3-03

 

 

 

 

 

 

 

 

 

Illustration 2.17 Sum of All References When Reference Range is Set to 0

P 3-00 Reference Range =[1]-Max-Max

Resulting reference

<![if ! IE]>

<![endif]>130BA185.10

P 3-03

Sum of all references

-P 3-03

Illustration 2.18 Sum of All References When Reference Range is Set to 1

The value of parameter 3-02 Minimum Reference cannot be set to less than 0, unless parameter 1-00 Configuration Mode is set to [3] Process. In that case, the following relations between the resulting reference (after clamping) and the sum of all references are as shown in

Illustration 2.19.

2 2

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

25

Product Overview

VLT® AutomationDrive FC 360

P 3-00 Reference Range= [0] Min to Max

2

2

Resulting reference

 

 

P 3-03

 

P 3-02

Sum of all

references

 

<![if ! IE]>

<![endif]>130BA186.11

2.4.3Scaling of Analog and Pulse References and Feedback

References and feedback are scaled from analog and pulse inputs in the same way. The only difference is that a reference above or below the speci€ed minimum and maximum endpoints (P1 and P2 in Illustration 2.20) are clamped while a feedback above or below is not.

Resource output

 

 

<![if ! IE]>

<![endif]>130BD431.10

[Hz]

 

 

 

 

 

High reference/

 

 

 

feedback value 50

 

 

P2

 

 

 

 

 

Illustration 2.19 Sum of All References When Minimum Reference is Set to a Minus Value

2.4.2Scaling of Preset References and Bus References

Preset references are scaled according to the following rules:

When parameter 3-00 Reference Range is set to [0] Min–Max, 0% reference equals 0 [unit] where unit can be any unit, for example RPM, m/s, and bar.

100% reference equals the maximum (absolute value of parameter 3-03 Maximum Reference, absolute value of parameter 3-02 Minimum Reference).

When parameter 3-00 Reference Range is set to [1] -Max–+Max, 0% reference equals 0 [unit], and 100% reference equals maximum reference.

Bus references are scaled according to the following rules:

When parameter 3-00 Reference Range is set to [0] Min–Max, 0% reference equals minimum reference and 100% reference equals maximum reference.

When parameter 3-00 Reference Range is set to [1] -Max–+Max, -100% reference equals -maximum reference, and 100% reference equals maximum reference.

Low reference/

P1

 

 

 

 

 

feedback value

 

 

 

Resource input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[V]

 

 

 

 

 

 

 

0

1

8

10

 

Terminal X high

Illustration 2.20 Minimum and Maximum Endpoints

26

Danfoss A/S © 03/2019 All rights reserved.

MG06B502

Product Overview

Design Guide

 

 

The endpoints P1 and P2 are de€ned in Table 2.3 depending on choice of input.

 

 

 

 

 

 

 

 

2

 

2

Input

Analog 53

Analog 53

Analog 54

Analog 54

Pulse input 29

Pulse input 33

 

 

 

voltage mode

current mode

voltage mode

current mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1=(Minimum input value, Minimum reference value)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum reference value

Parameter 6-14

Parameter 6-14 T

Parameter 6-24

Parameter 6-24 T

Parameter 5-52

Parameter 5-57 Term.

 

 

 

 

 

Terminal 53

erminal 53 Low

Terminal 54

erminal 54 Low

Term. 29 Low

33 Low Ref./Feedb.

 

 

 

 

 

Low Ref./Feedb.

Ref./Feedb. Value

Low Ref./Feedb.

Ref./Feedb. Value

Ref./Feedb. Value

Value

 

 

 

 

 

Value

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum input value

Parameter 6-10

Parameter 6-12 T

Parameter 6-20

Parameter 6-22 T

Parameter 5-50

Parameter 5-55 Term.

 

 

 

 

 

Terminal 53

erminal 53 Low

Terminal 54

erminal 54 Low

Term. 29 Low

33 Low Frequency

 

 

 

 

 

Low Voltage

Current [mA]

Low Voltage

Current [mA]

Frequency [Hz]

[Hz]

 

 

 

 

 

[V]

 

[V]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2=(Maximum input value, Maximum reference value)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum reference value

Parameter 6-15

Parameter 6-15 T

Parameter 6-25

Parameter 6-25 T

Parameter 5-53

Parameter 5-58 Term.

 

 

 

 

 

Terminal 53

erminal 53 High

Terminal 54

erminal 54 High

Term. 29 High

33 High Ref./Feedb.

 

 

 

 

 

High Ref./

Ref./Feedb. Value

High Ref./

Ref./Feedb. Value

Ref./Feedb. Value

Value

 

 

 

 

 

Feedb. Value

 

Feedb. Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum input value

Parameter 6-11

Parameter 6-13 T

Parameter 6-21

Parameter 6-23 T

Parameter 5-51

Parameter 5-56 Term.

 

 

 

 

 

Terminal 53

erminal 53 High

Terminal 54

erminal 54 High

Term. 29 High

33 High Frequency

 

 

 

 

 

High Voltage

Current [mA]

High

Current [mA]

Frequency [Hz]

[Hz]

 

 

 

 

 

[V]

 

Voltage[V]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 P1 and P2 Endpoints

2.4.4 Dead Band Around Zero

Sometimes, the reference (in rare cases also the feedback) should have a dead band around 0 to ensure that the machine is stopped when the reference is near 0.

To make the dead band active and to set the amount of dead band, do the following:

Set either the minimum reference value (see Table 2.3 for relevant parameter) or maximum reference value at 0. In other words, either P1 or P2 must be on the X-axis in Illustration 2.21.

Ensure that both points de€ning the scaling graph are in the same quadrant.

P1 or P2 de€nes the size of the dead band as shown in

Illustration 2.21.

Quadrant 2

Resource output

 

Quadrant 1

<![if ! IE]>

<![endif]>130BD446.10

[Hz] or “No unit”

 

 

 

 

 

 

 

High reference/feedback 50

P2

 

 

value

 

 

forward

 

 

 

 

 

 

P1

 

Resource input

Low reference/feedback

0

 

 

20 [mA]

value

1

16

 

Terminal

Terminal X high

 

low

 

 

-50

reverse

 

 

Quadrant 3

 

Quadrant 4

Illustration 2.21 Size of Dead Band

MG06B502

Danfoss A/S © 03/2019 All rights reserved.

27

Loading...
+ 67 hidden pages