Danfoss FC 111 Design guide

Design Guide

VLT® Flow Drive FC 111

vlt-drives.danfoss.com

VLT® Flow Drive FC 111

 

Design Guide

Contents

Contents

1 Introduction

10

1.1

Purpose of this Design Guide

10

1.2

Additional Resources

10

 

1.2.1

Other Resources

10

 

1.2.2 MCT 10 Set-up Software Support

10

1.3

Document and Software Version

10

1.4

Regulatory Compliance

10

 

1.4.1

Introduction

10

 

1.4.2

CE Mark

10

2 Safety

12

2.1

Safety Symbols

12

2.2

Qualified Personnel

12

2.3

Safety Precautions

12

3 Product Overview

14

3.1 Advantages

 

14

3.1.1 Why Use a Drive for Controlling Fans and Pumps?

14

 

3.1.1.1 The Clear Advantage - Energy Savings

14

 

3.1.1.2 Example of Energy Savings

15

 

3.1.1.3 Comparison of Energy Savings

15

 

3.1.1.4 Example with Varying Flow over 1 Year

17

 

3.1.1.5

Better Control

18

 

3.1.1.6 Star/Delta Starter or Soft Starter not Required

18

 

3.1.1.7 Using a Drive Saves Money

18

 

3.1.1.8 Traditional Fan System without a Drive

19

 

3.1.1.9 Fan System Controlled by Drives

20

3.1.2

Application Examples

20

 

3.1.2.1

Variable Air Volume

20

 

3.1.2.2

Constant Air Volume

21

 

3.1.2.3

Cooling Tower Fan

22

 

3.1.2.4

Condenser Pumps

23

 

3.1.2.5

Primary Pumps

24

 

3.1.2.6

Secondary Pumps

25

3.1.3

Check Valve Monitoring

26

3.1.4

Dry Pump Detection

26

3.1.5 End of Curve Detection

26

 

 

 

Danfoss A/S © 2021.04

 

AJ363928382091en-000101/130R0983 | 3

VLT® Flow Drive FC 111

 

 

Design Guide

 

 

Contents

 

 

 

 

 

3.1.6

Time-based Functions

26

3.2

Control Structures

26

 

3.2.1

Introduction

26

 

3.2.2 Control Structure Open Loop

27

 

3.2.3

PM/EC+ Motor Control

27

 

3.2.4 Local (Hand On) and Remote (Auto On) Control

27

 

3.2.5 Control Structure Closed Loop

28

 

3.2.6

Feedback Conversion

28

 

3.2.7

Reference Handling

28

 

3.2.8 Tuning the Drive Closed-loop

29

 

3.2.9 Adjusting the Manual PI

29

3.3

Ambient Running Conditions

30

 

3.3.1

Air Humidity

30

 

3.3.2 Acoustic Noise or Vibration

30

 

 

3.3.2.1

Acoustic Noise

30

 

 

3.3.2.2

Vibration and Shock

31

 

3.3.3

Aggressive Environments

31

3.4 General Aspects of EMC

31

 

3.4.1 Overview of EMC Emissions

31

 

3.4.2

Emission Requirements

32

 

3.4.3 EMC Emission Test Results

33

 

3.4.4

Harmonics Emission

34

 

 

3.4.4.1

Harmonics Emission Requirements

34

 

 

3.4.4.2 Harmonics Test Results (Emission)

35

 

3.4.5

Harmonics Emission Requirements

34

 

3.4.6 Harmonics Test Results (Emission)

36

 

3.4.7

Immunity Requirements

37

3.5

Galvanic Isolation (PELV)

37

3.6

Ground Leakage Current

38

 

3.6.1 Using a Residual Current Device (RCD)

40

3.7

Extreme Running Conditions

41

 

3.7.1

Introduction

41

 

3.7.2 Motor Thermal Protection (ETR)

42

 

3.7.3

Thermistor Inputs

42

 

 

3.7.3.1 Example with Digital Input and 10 V Power Supply

43

 

 

3.7.3.2 Example with Analog Input and 10 V Power Supply

43

4 | Danfoss A/S © 2021.04

AJ363928382091en-000101/130R0983

Danfoss FC 111 Design guide

VLT® Flow Drive FC 111

 

Design Guide

Contents

4 Selection and Ordering

45

4.1

Type Code

45

4.2

Options and Accessories

46

 

4.2.1 Local Control Panel (LCP)

46

 

4.2.2

IP21 Enclosure Kit

46

 

4.2.3

Decoupling Plate

48

4.3

Ordering Numbers

49

 

4.3.1

Options and Accessories

49

 

4.3.2

Harmonic Filters

50

 

4.3.3

External RFI Filter

51

5 Mechanical Installation Considerations

53

5.1

Power Ratings, Weights, and Dimensions

53

5.2

Mechanical Installation H1-H8

55

 

5.2.1

Side-by-side Installation

55

5.3

Mechanical Installation H13-H14

56

 

5.3.1

Tools Needed

56

 

5.3.2 Installation and Cooling Requirements

56

 

5.3.3

Lifting the Drive

57

 

5.3.4 Wall Mounting the Drive

58

 

5.3.5

Creating Cable Openings

59

 

5.3.6

Back-channel Cooling

59

5.4

Derating

60

 

5.4.1 Manual Derating and Automatic Derating

60

 

5.4.2 Derating for Low-speed Operation

60

 

5.4.3 Derating for Low Air Pressure and High Altitudes

60

 

5.4.4 Derating for Ambient Temperature and Switching Frequency

60

6 Electrical Installation Considerations

63

6.1

Safety Instructions

63

6.2

Electrical Wiring

64

6.3

EMC-compliant Electrical Installation

64

6.4

Relays and Terminals

66

 

6.4.1 Relays and Terminals on Enclosure Sizes H1–H5

66

 

6.4.2 Relays and Terminals on Enclosure Size H6

67

 

6.4.3 Relays and Terminals on Enclosure Size H7

67

 

6.4.4 Relays and Terminals on Enclosure Size H8

68

 

6.4.5 Relays and Terminals on Enclosure Size H13–H14

69

6.5

View of Control Shelf

69

 

 

Danfoss A/S © 2021.04

AJ363928382091en-000101/130R0983 | 5

VLT® Flow Drive FC 111

 

 

Design Guide

 

 

Contents

 

 

 

6.6

Fastener Tightening Torques

70

6.7

IT Mains

 

71

6.8

Mains and Motor Connection

72

 

6.8.1

Introduction

72

 

6.8.2

Connecting to the Ground

72

 

6.8.3

Connecting the Motor

73

 

6.8.4

Connecting the AC Mains

73

6.9

Fuses and Circuit Breakers

73

 

6.9.1

Branch Circuit Protection

73

 

6.9.2

Short-circuit Protection

73

 

6.9.3

Overcurrent Protection

74

 

6.9.4

CE Compliance

74

 

6.9.5

Recommendation of Fuses and Circuit Breakers

74

6.10

Control Terminals

75

6.11

Efficiency

 

76

 

6.11.1

Efficiency of the Drive

76

 

6.11.2

Efficiency of the Motor

77

 

6.11.3

Efficiency of the System

77

6.12

dU/dt Conditions

77

 

6.12.1

dU/dt Overview

77

 

6.12.2

dU/dt Test Results for H1–H8

77

 

6.12.3

High-power Range

80

 

6.12.4

dU/dt Test Results for H13–H14

80

7 Programming

 

81

7.1

Local Control Panel (LCP)

81

7.2

Menus

 

 

82

 

7.2.1

Status Menu

82

 

7.2.2

Quick Menu

82

 

 

7.2.2.1

Quick Menu Introduction

82

 

 

7.2.2.2

Setup Wizard Introduction

83

 

 

7.2.2.3 Setup Wizard for Open-loop Applications

84

 

 

7.2.2.4 Setup Wizard for Closed-loop Applications

89

 

 

7.2.2.5

Motor Setup

94

 

 

7.2.2.6

Changes Made Function

97

 

 

7.2.2.7

Changing Parameter Settings

98

 

 

7.2.2.8 Accessing All Parameters via the Main Menu

98

 

7.2.3

Main Menu

98

 

 

 

6 | Danfoss A/S © 2021.04

 

AJ363928382091en-000101/130R0983

VLT® Flow Drive FC 111

 

Design Guide

 

Contents

 

 

 

7.3

Quick Transfer of Parameter Settings between Multiple Drives

98

 

7.3.1

Transferring Data from the Drive to the LCP

98

 

7.3.2

Transferring Data from the LCP to the Drive

98

7.4

Readout and Programming of Indexed Parameters

99

7.5

Initialization to Default Settings

99

 

7.5.1

Recommended Initialization

99

 

7.5.2

Two-finger Initialization

99

8 RS485 Installation and Set-up

101

8.1

RS485

 

101

 

8.1.1

Overview

101

 

8.1.2

Connecting the Drive to the RS485 Network

102

 

8.1.3

Hardware Set-up

102

 

8.1.4

Parameter Settings for Modbus Communication

103

 

8.1.5

EMC Precautions

103

8.2

FC Protocol

104

 

8.2.1

Overview

104

 

8.2.2

FC with Modbus RTU

104

8.3

Network Configuration

105

8.4

FC Protocol Message Framing Structure

105

 

8.4.1

Content of a Character (byte)

105

 

8.4.2

Telegram Structure

105

 

8.4.3

Telegram Length (LGE)

105

 

8.4.4

Drive Address (ADR)

106

 

8.4.5

Data Control Byte (BCC)

106

 

8.4.6

The Data Field

106

 

8.4.7

The PKE Field

107

 

8.4.8

Parameter Number (PNU)

108

 

8.4.9

Index (IND)

108

 

8.4.10

Parameter Value (PWE)

108

 

8.4.11

Data Types Supported by the Drive

109

 

8.4.12

Conversion

109

 

8.4.13

Process Words (PCD)

110

8.5

Examples

110

 

8.5.1

Writing a Parameter Value

110

 

8.5.2

Reading a Parameter Value

110

8.6

Modbus RTU

111

 

8.6.1

Prerequisite Knowledge

111

 

 

Danfoss A/S © 2021.04

AJ363928382091en-000101/130R0983 | 7

VLT® Flow Drive FC 111

 

 

Design Guide

 

 

Contents

 

 

 

 

 

8.6.2

Modbus RTU Overview

111

 

8.6.3

Drive with Modbus RTU

111

8.7

Network Configuration

112

8.8

Modbus RTU Message Framing Structure

112

 

8.8.1

Modbus RTU Message Byte Format

112

 

8.8.2

Modbus RTU Telegram Structure

113

 

8.8.3

Start/Stop Field

113

 

8.8.4

Address Field

113

 

8.8.5

Function Field

113

 

8.8.6

Data Field

113

 

8.8.7

CRC Check Field

113

 

8.8.8

Coil Register Addressing

114

 

 

8.8.8.1

Introduction

114

 

 

8.8.8.2

Coil Register

114

 

 

8.8.8.3 Drive Control Word (FC Profile)

114

 

 

8.8.8.4 Drive Status Word (FC Profile)

115

 

 

8.8.8.5

Address/Registers

115

 

8.8.9

Access via PCD Write/read

116

 

8.8.10

How to Control the Drive

117

 

 

8.8.10.1

Introduction

117

 

 

8.8.10.2 Function Codes Supported by Modbus RTU

117

 

 

8.8.10.3

Modbus Exception Codes

118

8.9

How to Access Parameters

118

 

8.9.1

Parameter Handling

118

 

8.9.2

Storage of Data

118

 

8.9.3

IND (Index)

119

 

8.9.4

Text Blocks

119

 

8.9.5

Conversion Factor

119

 

8.9.6

Parameter Values

119

8.10

Examples

 

119

 

8.10.1

Introduction

119

 

8.10.2

Read Coil Status (01 hex)

119

 

8.10.3

Force/Write Single Coil (05 hex)

120

 

8.10.4

Force/Write Multiple Coils (0F hex)

121

 

8.10.5

Read Holding Registers (03 hex)

122

 

8.10.6

Preset Single Register (06 hex)

122

 

8.10.7

Preset Multiple Registers (10 hex)

123

 

8.10.8

Read/Write Multiple Registers (17 hex)

124

 

 

 

8 | Danfoss A/S © 2021.04

 

AJ363928382091en-000101/130R0983

VLT® Flow Drive FC 111

 

Design Guide

 

Contents

 

 

 

8.11

Danfoss FC Control Profile

125

 

8.11.1

Control Word According to FC Profile (8-10 Protocol = FC Profile)

125

 

8.11.2

Explanation of Each Control Bit

126

 

8.11.3

Status Word According to FC Profile (STW)

128

 

8.11.4

Explanation of Each Status Bit

128

 

8.11.5

Bus Speed Reference Value

130

9 General Specifications

131

9.1

Mains Supply

131

 

9.1.1

3x380–480 V AC

131

9.2

General Technical Data

133

 

9.2.1

Protection and Features

133

 

9.2.2

Mains Supply

133

 

9.2.3

Motor Output (U, V, W)

133

 

9.2.4

Cable Length and Cross-section

134

 

9.2.5

Digital Inputs

134

 

9.2.6

Analog Inputs

134

 

9.2.7

Analog Outputs

135

 

9.2.8

Digital Output

135

 

9.2.9

RS485 Serial Communication

135

 

9.2.10

24 V DC Output

135

 

9.2.11

Relay Output

135

 

9.2.12

10 V DC Output

136

 

9.2.13

Ambient Conditions (H1–H8)

136

 

9.2.14

Ambient Conditions (H13–H14)

137

10 Appendix

 

138

10.1

Abbreviations

138

10.2

Definitions

139

 

10.2.1

AC Drive

139

 

10.2.2

Input

139

 

10.2.3

Motor

139

 

10.2.4

References

141

 

10.2.5

Miscellaneous

141

Danfoss A/S © 2021.04

AJ363928382091en-000101/130R0983 | 9

VLT® Flow Drive FC 111

Design Guide

Introduction

 

 

1 Introduction

1.1 Purpose of this Design Guide

This Design Guide is intended for qualified personnel, such as:

Project and systems engineers.

Design consultants.

Application and product specialists.

The Design Guide provides technical information to understand the capabilities of the VLT® Flow Drive FC 111 for integration into motor control and monitoring systems. Its purpose is to provide design considerations and planning data for integration of the drive into a system. It caters for selection of drives and options for a diversity of applications and installations. Reviewing the detailed product information in the design stage enables developing a well-conceived system with optimal functionality and efficiency.

This manual is targeted at a worldwide audience. Therefore, wherever occurring, both SI and imperial units are shown. VLT® is a registered trademark for Danfoss A/S.

1.2 Additional Resources

1.2.1 Other Resources

Other resources are available to understand advanced drive functions and programming.

VLT® Flow Drive FC 111 Operating Guide provides basic information on mechanical dimensions, installation, and programming.

VLT® Flow Drive FC 111 Programming Guide provides information on how to program, and includes complete parameter descriptions.

Danfoss VLT® Energy Box software. Select PC Software Download at www.danfoss.com.

VLT® Energy Box software allows energy consumption comparisons of HVAC fans and pumps driven by Danfoss drives and alternative methods of flow control. Use this tool to accurately project the costs, savings, and payback of using Danfoss drives on HVAC fans, pumps, and cooling towers.

Supplementary publications and manuals are available from Danfoss website www.danfoss.com.

1.2.2 MCT 10 Set-up Software Support

Download the software from the service and support section on www.danfoss.com.

During the installation process of the software, enter access code 81462700 to activate the VLT® Flow Drive FC 111 functionality. A license key is not required for using the VLT® Flow Drive FC 111 functionality.

The latest software does not always contain the latest updates for drives. Contact the local sales office for the latest drive updates (in the form of *.OSS files).

1.3 Document and Software Version

This guide is regularly reviewed and updated. All suggestions for improvement are welcome. The original language of this manual is English.

Table 1: Document and Software Version

Edition

Remarks

Software version

 

 

 

AJ363928382091, version 0101

First edition.

65.00

 

 

 

1.4 Regulatory Compliance

1.4.1 Introduction

AC drives are designed in compliance with the directives described in this section.

1.4.2 CE Mark

The CE mark (Communauté Européenne) indicates that the product manufacturer conforms to all applicable EU directives. The EU directives applicable to the design and manufacture of drives are listed in the following table.

10 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Introduction

 

 

N O T I C E

The CE mark does not regulate the quality of the product. Technical specifications cannot be deduced from the CE mark.

N O T I C E

Drives with an integrated safety function must comply with the machinery directive.

Table 2: EU Directives Applicable to Drives

EU directive

Version

 

 

Low Voltage Directive

2014/35/EU

 

 

EMC Directive

2014/30/EU

 

 

ErP Directive

 

 

 

Declarations of conformity are available on request.

1.4.2.1 Low Voltage Directive

The aim of the Low Voltage Directive is to protect persons, domestic animals and property against dangers caused by the electrical equipment, when operating electrical equipment that is installed and maintained correctly, in its intended application. The directive applies to all electrical equipment in the 50–1000 V AC and the 75–1500 V DC voltage ranges.

1.4.2.2 EMC Directive

The purpose of the EMC (electromagnetic compatibility) Directive is to reduce electromagnetic interference and enhance immunity of electrical equipment and installations. The basic protection requirement of the EMC Directive states that devices that generate electromagnetic interference (EMI), or whose operation could be affected by EMI, must be designed to limit the generation of electromagnetic interference and shall have a suitable degree of immunity to EMI when properly installed, maintained, and used as intended. Electrical equipment devices used alone or as part of a system must bear the CE mark. Systems do not require the CE mark, but must comply with the basic protection requirements of the EMC Directive.

1.4.2.3 ErP Directive

The ErP Directive is the European Ecodesign Directive for energy-related products. The directive sets ecodesign requirements for energy-related products, including drives, and aims at reducing the energy consumption and environmental impact of products by establishing minimum energy-efficiency standards.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 11

VLT® Flow Drive FC 111

Design Guide

Safety

 

 

2 Safety

2.1 Safety Symbols

The following symbols are used in this manual:

D A N G E R

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

W A R N I N G

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

C A U T I O N

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

N O T I C E

Indicates information considered important, but not hazard-related (for example, messages relating to property damage).

2.2 Qualified Personnel

To allow trouble-free and safe operation of the unit, only qualified personnel with proven skills are allowed to transport, store, assemble, install, program, commission, maintain, and decommission this equipment.

Persons with proven skills:

Are qualified electrical engineers, or persons who have received training from qualified electrical engineers and are suitably experienced to operate devices, systems, plant, and machinery in accordance with pertinent laws and regulations.

Are familiar with the basic regulations concerning health and safety/accident prevention.

Have read and understood the safety guidelines given in all manuals provided with the unit, especially the instructions given in the Operating Guide.

Have good knowledge of the generic and specialist standards applicable to the specific application.

2.3 Safety Precautions

W A R N I N G

HAZARDOUS VOLTAGE

AC drives contain hazardous voltage when connected to the AC mains or connected on the DC terminals. Failure to perform installation, start-up, and maintenance by skilled personnel can result in death or serious injury.

-Only skilled personnel must perform installation, start-up, and maintenance.

W A R N I N G

UNINTENDED START

When the drive is connected to AC mains, DC supply, or load sharing, the motor may start at any time. Unintended start during programming, service, or repair work can result in death, serious injury, or property damage. Start the motor with an external switch, a fieldbus command, an input reference signal from the local control panel (LCP), via remote operation using MCT 10 software, or after a cleared fault condition.

-Disconnect the drive from the mains.

-Press [Off/Reset] on the LCP before programming parameters.

-Ensure that the drive is fully wired and assembled when it is connected to AC mains, DC supply, or load sharing.

12 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Safety

 

 

W A R N I N G

DISCHARGE TIME

The drive contains DC-link capacitors, which can remain charged even when the drive is not powered. High voltage can be present even when the warning indicator lights are off.

Failure to wait the specified time after power has been removed before performing service or repair work could result in death or serious injury.

-Stop the motor.

-Disconnect AC mains, permanent magnet type motors, and remote DC-link supplies, including battery back-ups, UPS, and DC-link connections to other drives.

-Wait for the capacitors to discharge fully. The minimum waiting time is specified in the table Discharge time and is also visible on the nameplate on the top of the drive.

-Before performing any service or repair work, use an appropriate voltage measuring device to make sure that the capacitors are fully discharged.

Table 3: Discharge Time

Voltage [V]

Power range [kW (hp)]

Minimum waiting time (minutes)

 

 

 

3x400

0.37–7.5 (0.5–10)

4

 

 

 

3x400

11–90 (15–125)

15

 

 

 

3x400

110–315 (150–450)

20

 

 

 

W A R N I N G

LEAKAGE CURRENT HAZARD

Leakage currents exceed 3.5 mA. Failure to ground the drive properly can result in death or serious injury.

-Ensure that the minimum size of the ground conductor complies with the local safety regulations for high touch current equipment.

W A R N I N G

EQUIPMENT HAZARD

Contact with rotating shafts and electrical equipment can result in death or serious injury.

-Ensure that only trained and qualified personnel perform installation, start-up, and maintenance.

-Ensure that electrical work conforms to national and local electrical codes.

-Follow the procedures in this manual.

C A U T I O N

INTERNAL FAILURE HAZARD

An internal failure in the drive can result in serious injury when the drive is not properly closed.

-Ensure that all safety covers are in place and securely fastened before applying power.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 13

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

3 Product Overview

3.1 Advantages

3.1.1 Why Use a Drive for Controlling Fans and Pumps?

A drive takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information, see 3.1.1.2 Example of Energy Savings.

3.1.1.1 The Clear Advantage - Energy Savings

The clear advantage of using a drive for controlling the speed of fans or pumps lies in the electricity savings.

When comparing with alternative control systems and technologies, a drive is the optimum energy control system for controlling fan and pump systems.

<![if ! IE]>

<![endif]>PRESSURE%

120

A

100

80

60 B

40

C

20

SYSTEM CURVE

FAN CURVE

<![if ! IE]>

<![endif]>e30ba780.11

0

20

40

60

80

100

120

140

160

180

 

 

 

 

VOLUME%

 

 

 

Illustration 1: Fan Curves (A, B, and C) for Reduced Fan Volumes

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSTEM

CURVE

 

<![if ! IE]>

<![endif]>%

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>PRESSURE

60

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

FAN

CURVE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140

 

 

180

 

 

20

40

60

80

100

120

160

 

 

 

 

 

 

 

 

 

Volume %

 

 

 

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>%

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>POWER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>INPUT

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

ENERGY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONSUMED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

40

60

80

100

120

140

160

180

 

 

 

 

 

 

 

 

 

Volume %

 

 

 

 

 

 

 

 

 

 

 

Illustration 2: Energy Savings with Drive Solution

<![if ! IE]>

<![endif]>e30ba781.11

14 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

When using a drive to reduce fan capacity to 60% - more than 50% energy savings may be obtained in typical applications.

3.1.1.2 Example of Energy Savings

As shown in the following illustration, the flow is controlled by changing the RPM. By reducing the speed by only 20% from the rated speed, the flow is also reduced by 20%. This is because the flow is directly proportional to the RPM. The consumption of electricity, however, is reduced by 50%.

If the system in question only needs to be able to supply a flow that corresponds to 100% a few days in a year, while the average is below 80% of the rated flow for the remainder of the year, the amount of energy saved is even more than 50%.

The following illustration describes the dependence of flow, pressure, and power consumption on RPM.

100%

 

 

<![if ! IE]>

<![endif]>e75ha208.10

 

 

 

80%

 

 

 

50%

Flow ~n

 

 

 

 

 

 

 

Pressure ~n2

25%

 

 

 

12,5%

 

Power ~n3

 

 

 

 

 

 

 

n

 

50%

80%

100%

Illustration 3: Laws of Proportionally

Flow :

Q1

 

 

=

 

n1

 

 

 

Q

 

 

 

n

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

Pressure :

 

H1

=

 

n1 2

 

 

H

2

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Power :

P1

 

=

 

n1 3

 

P

 

 

 

 

n

 

 

 

2

 

 

 

2

 

 

 

Table 4: The Laws of Proportionality

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q = Flow

 

 

 

 

 

 

 

 

 

 

P = Power

 

 

 

 

 

 

 

 

 

 

Q1 = Rated flow

 

 

P1 = Rated power

 

 

 

 

 

 

 

 

 

 

Q2 = Reduced flow

P2 = Reduced power

 

 

 

 

 

 

 

 

 

 

 

H = Pressure

 

 

 

 

 

n = Speed control

 

 

 

 

 

 

 

 

 

 

H1 = Rated pressure

n1 = Rated speed

 

 

 

 

 

 

 

 

 

 

H2 = Reduced pressure

n2 = Reduced speed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1.3 Comparison of Energy Savings

The Danfoss drive solution offers major savings compared with traditional energy saving solutions such as discharge damper solution and inlet guide vanes (IGV) solution. This is because the drive is able to control fan speed according to thermal load on the system, and the drive has a built-in facility that enables the drive to function as a building management system, BMS.

The illustration in 3.1.1.2 Example of Energy Savings shows typical energy savings obtainable with 3 well-known solutions when fan volume is reduced to 60%. As the graph shows, more than 50% energy savings can be achieved in typical applications.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 15

VLT® Flow Drive FC 111

 

Design Guide

Product Overview

 

<![if ! IE]>

<![endif]>e30ba782.10

1

2

3

4

5

Illustration 4: The 3 Common Energy Saving Systems

1Discharge damper

2Less energy savings

3Maximum energy savings

100

 

 

Discharge Damper Solution

 

 

 

 

 

80

 

 

 

 

 

IGV Solution

 

 

 

 

 

<![if ! IE]>

<![endif]>Inputpower %

 

<![if ! IE]>

<![endif]>consumedEnergy

 

 

 

 

 

<![if ! IE]>

<![endif]>consumed

60

 

 

 

 

 

 

 

40

 

 

 

 

 

<![if ! IE]>

<![endif]>Energy

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

60

0

60

Volume %

Illustration 5: Energy Savings

4IGV

5Costlier installation

<![if ! IE]>

<![endif]>e30ba779.12

VLT Solution

<![if ! IE]>

<![endif]>Energy consumed

0 60

Discharge dampers reduce power consumption. Inlet guide vanes offer a 40% reduction, but are expensive to install. The Danfoss drive solution reduces energy consumption with more than 50% and is easy to install. It also reduces noise, mechanical stress, and wear-and-tear, and extends the life span of the entire application.

16 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

3.1.1.4 Example with Varying Flow over 1 Year

This example is calculated based on pump characteristics obtained from a pump datasheet. The result obtained shows energy savings of more than 50% at the given flow distribution over a year. The payback period depends on the price per kWh and the price of drive. In this example, it is less than a year when compared with valves and constant speed.

Energy savings

Pshaft = Pshaft output

[h] t 2000

1500

1000

500

 

 

 

 

 

 

 

 

 

 

Q

100

200

300

 

400

 

 

[m3 /h]

<![if ! IE]>

<![endif]>e75ha210.11

Illustration 6: Flow Distribution over 1 Year

(mwg) Hs

60

50 B

40

30

20

10

0

(kW) Pshaft

60

50

40

30

20

10

0

<![if ! IE]>

<![endif]>e75ha209.11

 

 

 

 

 

A

1650rpm

 

 

 

 

1350rpm

 

 

C

 

 

1050rpm

 

 

 

 

 

 

 

 

750rpm

 

 

 

 

 

 

 

 

400 (m3 /h)

 

 

 

 

 

 

100

200

300

 

 

 

 

 

A1

1650rpm

 

 

 

 

 

 

 

B1

 

 

1350rpm

 

 

C1

1050rpm

 

 

 

 

 

 

 

 

 

 

 

750rpm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

200

300

400 (m3 /h)

Illustration 7: Energy

Table 5: Result

m3/h

Distribution

Valve regulation

Drive control

 

 

 

 

 

 

 

 

 

%

Hours

Power

Consumption

Power

Consumption

 

 

 

 

 

 

 

 

 

 

A1 - B1

kWh

A1 - C1

kWh

 

 

 

 

 

 

 

 

 

 

 

 

Danfoss A/S © 2021.04

 

 

 

AJ363928382091en-000101 / 130R0983 | 17

VLT® Flow Drive FC 111

 

 

 

 

Design Guide

 

 

 

 

Product Overview

 

 

 

 

 

 

 

 

 

 

 

 

 

 

350

5

438

42.5

18.615

42.5

18.615

 

 

 

 

 

 

 

300

15

1314

38.5

50.589

29.0

38.106

 

 

 

 

 

 

 

250

20

1752

35.0

61.320

18.5

32.412

 

 

 

 

 

 

 

200

20

1752

31.5

55.188

11.5

20.148

 

 

 

 

 

 

 

150

20

1752

28.0

49.056

6.5

11.388

 

 

 

 

 

 

 

100

20

1752

23.0

40.296

3.5

6.132

 

 

 

 

 

 

 

Σ

100

8760

275.064

26.801

 

 

 

 

 

 

 

3.1.1.5 Better Control

If a drive is used for controlling the flow or pressure of a system, improved control is obtained.

A drive can vary the speed of the fan or pump, obtaining variable control of flow and pressure. Furthermore, a drive can quickly adapt the speed of the fan or pump to new flow or pressure conditions in the system.

Simple control of process (flow, level, or pressure) utilizing the built-in PI control.

3.1.1.6 Star/Delta Starter or Soft Starter not Required

When larger motors are started, it is necessary in many countries to use equipment that limits the start-up current. In more traditional systems, a star/delta starter or soft starter is widely used. Such motor starters are not required if a drive is used.

As shown in the following illustration, a drive does not consume more than rated current.

 

800

 

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>curent

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>load

300

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>% Full

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

12,5

25

Illustration 8: Start-up Current

1VLT® Flow Drive FC 111

2Star/delta starter

<![if ! IE]>

<![endif]>e75ha227.10

4

3

2

37,5 50Hz

Full load & speed

3

Soft starter

4

Start directly on mains

3.1.1.7 Using a Drive Saves Money

The example in 3.1.1.8 Traditional Fan System without a Drive and 3.1.1.9 Fan System Controlled by Drives shows that a drive replaces other equipment. It is possible to calculate the cost of installing the 2 different systems. In the example, the 2 systems can be established at roughly the same price.

Use the VLT® Energy Box software that is introduced in chapter Additional Resources to calculate the cost savings that can be achieved by using a drive.

18 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

3.1.1.8 Traditional Fan System without a Drive

Cooling section

Heating section

Inlet guide vane

Fan section

 

 

 

 

Supply

 

 

 

 

air

 

 

 

 

Fan

V.A.V

-

+

 

M

 

 

 

 

 

Sensors

outlets

 

 

 

PT

 

Return

Flow

Return

Flow

Control

 

 

 

 

Control

 

 

 

 

 

3-Port

3-Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

valve

Valve

valve

 

Valve

Mechanical

 

 

 

 

Bypass

 

posi-

Bypass

 

 

posi-

linkage

 

 

 

 

 

tion

 

 

tion

and vanes

 

 

 

 

 

 

 

 

 

 

 

x6

 

 

 

 

 

 

 

 

 

 

 

IGV

 

 

 

 

M

Pump

M

Pump

Motor

 

Duct

 

 

 

 

 

 

 

or

 

 

 

 

x6

 

 

x6

 

 

 

actuator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local

Main

 

 

 

 

 

 

 

 

 

 

D.D.C.

 

 

 

 

 

 

 

 

 

 

B.M.S

 

Starter

 

 

Starter

 

 

 

Starter

 

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

 

 

 

 

 

Fuses

 

 

Fuses

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

 

 

 

LV

 

 

 

LV

 

 

 

control

 

 

 

 

 

 

 

Pressure

 

signal

 

 

 

supply

 

 

 

supply

Power

 

0/10V

P.F.C

 

 

 

 

 

 

P.F.C

control

 

 

 

 

 

 

 

 

Factor

signal

 

 

 

 

 

 

 

 

 

 

Correction

0/10V

 

 

 

Mains

 

 

Mains

 

 

 

Mains

 

 

 

Illustration 9: Traditional Fan System without a Drive

D.D.C.

Direct digital control

Sensor

Pressure

E.M.S.

Energy management system

P

 

 

 

V.A.V.

Variable air volume

Sensor

Temperature

T

 

 

 

 

 

<![if ! IE]>

<![endif]>e75ha205.12

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 19

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

3.1.1.9 Fan System Controlled by Drives

Cooling section Heating section Fan section

 

 

 

 

 

Supply

 

 

 

 

 

Fan

air

 

 

-

 

+

 

V.A.V

 

 

M

Sensors

 

 

outlets

 

 

 

 

 

PT

Return

Flow

Return

 

Flow

 

 

 

 

 

x3

 

 

M

Pump

M

Pump

Duct

 

x3

x3

 

 

 

 

 

 

Local

Main

VLT

 

VLT

VLT

D.D.C.

 

B.M.S

 

 

 

Pressure

control

 

 

 

control

 

 

 

 

 

0-10V

 

 

 

 

 

or

 

 

 

 

 

0/4-20mA

 

 

 

Control

 

Control

 

 

 

 

temperature

 

 

 

temperature

 

 

 

 

 

0-10V

 

 

 

0-10V

 

 

 

 

 

or

 

 

 

or

 

 

 

 

 

0/4-20mA

 

 

 

0/4-20mA

 

 

 

Mains

Mains

Mains

 

 

Illustration 10: Fan System Controlled by Drives

D.D.C.

Direct digital control

Sensor

Pressure

E.M.S.

Energy management system

P

 

 

 

V.A.V.

Variable air volume

Sensor

Temperature

T

 

 

 

 

 

<![if ! IE]>

<![endif]>e75ha206.11

3.1.2 Application Examples

The following sections give typical examples of applications.

3.1.2.1 Variable Air Volume

VAV or variable air volume systems, control both the ventilation and temperature to satisfy the requirements of a building. Central VAV systems are considered to be the most energy efficient method to air condition buildings. By designing central systems instead of distributed systems, a greater efficiency can be obtained.

The efficiency comes from utilizing larger fans and larger chillers which have much higher efficiencies than small motors and distributed air-cooled chillers. Savings are also seen from the decreased maintenance requirements.

The VLT Solution

While dampers and IGVs work to maintain a constant pressure in the ductwork, a drive solution saves much more energy and reduces the complexity of the installation. Instead of creating an artificial pressure drop or causing a decrease in fan efficiency, the drive decreases the speed of the fan to provide the flow and pressure required by the system.

Centrifugal devices such as fans behave according to the centrifugal laws. This means that the fans decrease the pressure and flow they produce as their speed is reduced. Their power consumption is thereby significantly reduced. The PI controller of the drive can be used to eliminate the need for additional controllers.

20 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

 

 

 

 

 

 

 

 

 

 

Pressure

Cooling coil

Heating coil

 

 

 

Drive

 

signal

Filter

 

 

 

 

 

Supply fan

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pressure Flow transmitter

D2

Drive

 

 

 

Return fan

Flow

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D3

Product Overview

VAV boxes

<![if ! IE]>

<![endif]>e30bb455.10

T

Illustration 11: Variable Air Volume

3.1.2.2 Constant Air Volume

CAV, or constant air volume systems, are central ventilation systems usually used to supply large common zones with the minimum amounts of fresh tempered air. They preceded VAV systems and are therefore found in older multi-zoned commercial buildings as well. These systems preheat amounts of fresh air utilizing air handling units (AHUs) with a heating coil, and many are also used to air condition buildings and have a cooling coil. Fan coil units are frequently used to assist in the heating and cooling requirements in the individual zones.

The VLT Solution

With a drive, significant energy savings can be obtained while maintaining decent control of the building. Temperature sensors or CO2 sensors can be used as feedback signals to drives. Whether controlling temperature, air quality, or both, a CAV system can be controlled to operate based on actual building conditions. As the number of people in the controlled area decreases, the need for fresh air decreases. The CO2 sensor detects lower levels and decreases the supply fans speed. The return fan modulates to maintain a static pressure setpoint or fixed difference between the supply and return airflows.

With temperature control, especially used in air conditioning systems, as the outside temperature varies as well as the number of people in the controlled zone changes, different cooling requirements exist. As the temperature decreases below the setpoint, the supply fan can decrease its speed. The return fan modulates to maintain a static pressure setpoint. By decreasing the air flow, energy used to heat or cool the fresh air is also reduced, adding further savings.

Several features of the Danfoss dedicated drive can be utilized to improve the performance of the CAV system. One concern of controlling a ventilation system is poor air quality. The programmable minimum frequency can be set to maintain a minimum amount of supply air regardless of the feedback or reference signal. The drive also includes a PI controller, which allows monitoring both temperature and air quality. Even if the temperature requirement is fulfilled, the drive maintains enough supply air to satisfy the air quality sensor. The controller is capable of monitoring and comparing 2 feedback signals to control the return fan by maintaining a fixed differential airflow between the supply and return ducts as well.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 21

VLT® Flow Drive FC 111

 

 

 

 

Design Guide

 

 

 

Product Overview

Cooling coil

Heating coil

Drive

Temperature

<![if ! IE]>

<![endif]>e30bb451.10

 

 

 

 

 

 

 

signal

 

 

 

Filter

 

 

 

 

 

Supply fan

 

D1

 

 

 

 

 

 

 

 

Temperature

 

 

 

 

transmitter

D2

 

 

Pressure

 

 

 

 

 

 

 

 

signal

 

 

 

Drive

Return fan

 

 

 

 

 

D3

 

 

 

Pressure

 

 

 

transmitter

 

 

 

 

Illustration 12: Constant Air Volume

3.1.2.3 Cooling Tower Fan

Cooling tower fans cool condenser-water in water-cooled chiller systems. Water-cooled chillers provide the most efficient means of creating chilled water. They are as much as 20% more efficient than air cooled chillers. Depending on climate, cooling towers are often the most energy efficient method of cooling the condenser-water from chillers.

They cool the condenser water by evaporation. The condenser water is sprayed into the cooling tower until the cooling towers fill to increase its surface area. The tower fan blows air through the fill and sprayed water to aid in the evaporation. Evaporation removes energy from the water dropping its temperature. The cooled water collects in the cooling towers basin where it is pumped back into the chillers condenser and the cycle is repeated.

The VLT Solution

With a drive, the cooling towers fans can be controlled to the required speed to maintain the condenser-water temperature. The drives can also be used to turn the fan on and off as needed.

Several features of the Danfoss dedicated drive can be utilized to improve the performance of cooling tower fans applications. As the cooling tower fans drop below a certain speed, the effect the fan has on cooling the water becomes small. Also, when utilizing a gearbox to frequency control the tower fan, a minimum speed of 40–50% is required.

The customer programmable minimum frequency setting is available to maintain this minimum frequency even as the feedback or speed reference calls for lower speeds.

Also as a standard feature, the drive can be programmed to enter a sleep mode and stop the fan until a higher speed is required. Additionally, some cooling tower fans have undesirable frequencies that may cause vibrations. These frequencies can easily be avoided by programming the bypass frequency ranges in the drive.

22 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

 

 

 

Design Guide

 

 

Product Overview

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>e30bb453.10

 

 

 

Drive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water Inlet

 

 

Temperature

 

 

Sensor

BASIN

Water Outlet

Conderser

 

 

 

 

Water pump

 

 

<![if ! IE]>

<![endif]>CHILLER

Supply

Illustration 13: Cooling Tower Fan

3.1.2.4 Condenser Pumps

Condenser water pumps are primarily used to circulate water through the condenser section of water cooled chillers and their associated cooling tower. The condenser water absorbs the heat from the chiller's condenser section and releases it into the atmosphere in the cooling tower. These systems are used to provide the most efficient means of creating chilled water, they are as much as 20% more efficient than air cooled chillers.

The VLT Solution

Drives can be added to condenser water pumps instead of balancing the pumps with a throttling valve or trimming the pump impeller.

Using a drive instead of a throttling valve simply saves the energy that would have been absorbed by the valve. This can amount to savings of 15–20% or more. Trimming the pump impeller is irreversible, thus if the conditions change and higher flow is required the impeller must be replaced.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 23

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

 

<![if ! IE]>

<![endif]>e30bb452.10

Drive

 

Water

 

Inlet

 

Flow or pressure sensor

 

BASIN

 

Water

<![if ! IE]>

<![endif]>CHILLER

Outlet

 

 

Throttling

Condenser

valve

Water pump

 

 

Supply

Illustration 14: Condenser Pumps

3.1.2.5 Primary Pumps

Primary pumps in a primary/secondary pumping system can be used to maintain a constant flow through devices that encounter operation or control difficulties when exposed to variable flow. The primary/secondary pumping technique decouples the primary production loop from the secondary distribution loop. This allows devices such as chillers to obtain constant design flow and operate properly while allowing the rest of the system to vary in flow.

As the evaporator flow rate decreases in a chiller, the chilled water begins to become overchilled. As this happens, the chiller attempts to decrease its cooling capacity. If the flow rate drops far enough, or too quickly, the chiller cannot shed its load sufficiently and the chiller’s safety trips the chiller requiring a manual reset. This situation is common in large installations especially when 2 or more chillers in parallel are installed if primary/ secondary pumping is not utilized.

The VLT Solution

Depending on the size of the system and the size of the primary loop, the energy consumption of the primary loop can become substantial.

A drive can be added to the primary system to replace the throttling valve and/or trimming of the impellers, leading to reduced operating expenses. 2 control methods are common:

Flow meter

Because the desired flow rate is known and is constant, a flow meter installed at the discharge of each chiller, can be used to control the pump directly. Using the built-in PI controller, the drive always maintains the appropriate flow rate, even compensating for the changing resistance in the primary piping loop as chillers and their pumps are staged on and off.

Local speed determination

The operator simply decreases the output frequency until the design flow rate is achieved.

Using a drive to decrease the pump speed is very similar to trimming the pump impeller, except it does not require any labor, and the pump efficiency remains higher. The balancing contractor simply decreases the speed of the pump until the proper flow rate is achieved and leaves the speed fixed. The pump operates at this speed any time the chiller is staged on. Because the primary loop does not have control valves or other devices that can cause the system curve to change, and the variance due to staging pumps and chillers on and off is usually small, this fixed speed remains appropriate. If the flow rate needs to be increased later in the system’s life, the drive can simply increase the pump speed instead of requiring a new pump impeller.

24 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Flowmeter

 

 

Flowmeter

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>CHILLER

<![if ! IE]>

<![endif]>CHILLER

Drive

 

 

 

 

Drive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Overview

<![if ! IE]>

<![endif]>e30bb456.10

Illustration 15: Primary Pumps

3.1.2.6 Secondary Pumps

Secondary pumps in a primary/secondary chilled water pumping system distribute the chilled water to the loads from the primary production loop. The primary/secondary pumping system is used to hydronically de-couple 1 piping loop from another. In this case, the primary pump is used to maintain a constant flow through the chillers while allowing the secondary pumps to vary in flow, increase control and save energy.

If the primary/secondary concept is not used in the design of a variable volume system when the flow rate drops far enough or too quickly, the chiller cannot shed its load properly. The chiller’s low evaporator temperature safety then trips the chiller requiring a manual reset. This situation is common in large installations especially when 2 or more chillers in parallel are installed.

The VLT Solution

While the primary-secondary system with 2-way valves improves energy savings and eases system control problems, the true energy savings and control potential is realized by adding drives.

With the proper sensor location, the addition of drives allows the pumps to vary their speed to follow the system curve instead of the pump curve. This results in the elimination of wasted energy and eliminates most of the overpressurization that 2-way valves can be subjected to.

As the monitored loads are reached, the 2-way valves close down. This increases the differential pressure measured across the load and the 2-way valve. As this differential pressure starts to rise, the pump is slowed to maintain the control head also called setpoint value. This setpoint value is calculated by summing the pressure drop of the load and the 2-way valve together under design conditions.

N O T I C E

When running multiple pumps in parallel, they must run at the same speed to maximize energy savings, either with individual dedicated drives or 1 drive running multiple pumps in parallel.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 25

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

 

 

 

P

<![if ! IE]>

<![endif]>e30bb454.10

 

 

Drive

 

 

 

 

 

 

 

3

 

 

<![if ! IE]>

<![endif]>CHILLER

<![if ! IE]>

<![endif]>CHILLER

3

 

 

Drive

 

 

 

 

 

Illustration 16: Secondary Pumps

3.1.3 Check Valve Monitoring

In the pump application system, a damaged check valve is hard to detect, which therefore causes low efficiency of the whole system. VLT® Flow Drive FC 111 has the ability to monitor the status of check valves in the system. After enabling the check valve monitoring function via setting the parameter 22-04 Check Valve Monitor to [1] Enabled, once a damaged check valve is detected, the drive trips warning 159, Check Valve Failure.

3.1.4 Dry Pump Detection

In the pump application system, the drive monitors the operation status of the system to detect whether there is water on pump's suction side. If the pump runs at maximum speed and consumes little power, then it can be assumed that there is no water on the pump's suction side. Via setting the parameter 22-26 Dry Pump Function to warning or alarm, once the dry pump condition is detected, the drive trips warning/alarm 93, dry pump.

3.1.5 End of Curve Detection

In the pump application system, the drive monitors the operation status of the system to detect whether the pressure side of pump is subject to a major leakage. If the pump runs at maximum speed for a defined time period, but the pressure is below the set point, then it can be considered to reflect the end of curve situation. Via setting the parameter 22-50 End of Curve Function to warning or alarm, once the end of curve condition is detected, the drive trips warning/alarm 94, end of curve.

3.1.6 Time-based Functions

In some application scenarios, there are requirements to control the motor running for a specific time, in a specific direction and a specific speed within a specific time interval. For example, checking the motor status in fire mode or exercising pumps, fans, and compressors.

For detailed parameter settings, refer to the parameter group 23-** Time-based Functions in the drive's Programming Guide.

3.2 Control Structures

3.2.1 Introduction

There are two control modes for the drive:

Open loop.

Closed loop.

Select [0] Open loop or [1] Closed loop in parameter 1-00 Configuration Mode.

26 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

3.2.2 Control Structure Open Loop

Reference

 

 

 

 

 

 

 

 

 

 

handling

 

 

 

 

 

 

P 4-14

Remote

 

 

 

 

 

 

 

Motor speed

reference

 

 

Remote

 

 

high limit [Hz]

Auto mode

 

 

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hand mode

 

 

Local

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local

 

 

 

 

 

 

 

P 4-12

reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motor speed

scaled to

 

 

 

 

 

 

low limit [Hz]

Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LCP Hand on,

 

 

 

 

 

 

 

 

 

off and auto

 

 

 

 

 

 

 

 

 

on keys

 

 

 

 

 

 

 

 

 

P 3-4* Ramp 1

P 3-5* Ramp 2

Ramp

100%

<![if ! IE]>

<![endif]>e30bb892.11

 

0%

To motor

 

control

 

 

 

 

 

 

100%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-100%

 

 

P 4-10

 

 

 

 

 

 

 

 

Motor speed

 

 

 

 

direction

Illustration 17: Open-loop Structure

In the configuration shown in the above illustration, parameter 1-00 Configuration Mode is set to [0] Open loop. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The output from the motor control is then limited by the maximum frequency limit.

3.2.3 PM/EC+ Motor Control

The Danfoss EC+ concept provides the possibility for using high-efficient PM motors (permanent magnet motors) in IEC standard enclosure sizes operated by Danfoss drives.

The commissioning procedure is comparable to the existing one for asynchronous (induction) motors by utilizing the Danfoss VVC+ PM control strategy.

Customer advantages:

Free choice of motor technology (permanent magnet or induction motor).

Installation and operation as know on induction motors.

Manufacturer independent when selecting system components (for example, motors).

Best system efficiency by selecting best components.

Possible retrofit of existing installations.

Power range: 0.37–90 kW (0.5–121 hp) (400 V) for induction motors and 0.37–22 kW (0.5–30 hp) (400 V) for PM motors. Current limitations for PM motors:

Currently only supported up to 22 kW (30 hp).

LC filters are not supported with PM motors.

Kinetic back-up algorithm is not supported with PM motors.

Support only complete AMA of the stator resistance Rs in the system.

No stall detection (supported from software version 62.80).

3.2.4 Local (Hand On) and Remote (Auto On) Control

The drive can be operated manually via the local control panel (LCP) or remotely via analog/digital inputs or serial bus. If allowed in parameter 0-40 [Hand on] Key on LCP, parameter 0-44 [Off/Reset] Key on LCP, and parameter 0-42 [Auto on] Key on LCP, it is possible to start and stop the drive via LCP by pressing [Hand On] and [Off/Reset]. Alarms can be reset via the [Off/Reset] key.

Hand

Off

Auto

On

Reset

On

Illustration 18: LCP Keys

<![if ! IE]>

<![endif]>e30bb893.11

Local reference forces the configuration mode to open loop, independent on the setting of parameter 1-00 Configuration Mode.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 27

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

Local reference is restored at power-down.

3.2.5 Control Structure Closed Loop

The internal controller allows the drive to become a part of the controlled system. The drive receives a feedback signal from a sensor in the system. It then compares this feedback to a setpoint reference value and determines the error, if any, between these 2 signals. It then adjusts the speed of the motor to correct this error.

For example, consider a compressor application where the speed of the compressor is to be controlled to ensure a constant suction pressure in an evaporator. The suction pressure value is supplied to the drive as the setpoint reference. A pressure sensor measures the actual suction pressure in the evaporator and supplies the data to the drive as a feedback signal. If the feedback signal is greater than the setpoint reference, the drive speeds up the compressor to reduce the pressure. In a similar way, if the suction pressure is lower than the setpoint reference, the drive automatically slows down the compressor to increase the pressure.

 

 

100%

 

Reference

+

0%

 

S

 

 

 

_

PI

 

 

 

 

 

*[-1]

100%

 

Feedback

 

 

 

 

 

 

7-30 PI

-100%

P 4-10

 

 

 

Normal/Inverse

 

Motor speed

 

Control

 

direction

Illustration 19: Control Structure Closed Loop

<![if ! IE]>

<![endif]>e30bb894.11

Scale to

 

To motor

speed

 

control

 

 

 

While the default values for the closed-loop controller of the drive often provide satisfactory performance, the control of the system can often be optimized by adjusting parameters.

3.2.6 Feedback Conversion

In some applications, it may be useful to convert the feedback signal. One example of this is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. See the following illustration.

Ref.

 

 

 

<![if ! IE]>

<![endif]>e30bb895.10

signal

 

 

 

 

 

Ref.+

 

PI

 

 

P 20-01

-

 

 

 

 

Desired

FB conversion

 

 

flow

FB

P

 

 

 

 

 

 

Flow

Flow

 

 

 

 

 

FB

 

 

P

 

 

 

 

 

signal

 

 

 

 

 

P

 

Illustration 20: Feedback Signal Conversion

3.2.7 Reference Handling

Details for open-loop and closed-loop operation.

28 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

Intern resource

 

 

 

 

 

 

Relative scalling reference

 

 

 

 

 

 

 

 

 

Preset relative reference

 

 

 

 

 

 

 

 

 

±100%

 

Input command:

 

 

 

 

 

 

 

 

 

Preset reference 0 ±100%

 

 

 

 

 

 

 

 

 

 

 

preset ref bit0, bit1, bit2

 

 

 

 

 

Preset reference 1 ±100%

 

 

 

 

 

 

Preset reference 2 ±100%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preset reference 3 ±100%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preset reference 4 ±100%

 

 

 

 

 

 

Preset reference

 

 

 

 

 

Preset reference 5 ±100%

 

 

 

 

 

 

 

 

 

 

 

Preset reference 6 ±100%

 

 

 

 

±100%

 

 

 

 

 

 

 

 

 

Preset reference 7 ±100%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative

External resource 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reference

Parameter choise:

 

+

 

 

X

 

=

No function

 

 

 

 

 

 

X+X*Y/100

Reference resource 1,2,3

 

 

±200%

 

Analog reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local bus reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulse input reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

External resource 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No function

 

 

 

 

±200%

 

 

 

 

 

 

 

 

 

Analog reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local bus reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulse input reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External resource 3

 

 

 

 

 

 

 

External reference in %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local bus reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulse input reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±200 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>e30be842.10

 

 

Speed open

 

 

loop

Input command:

mode

Scale to

 

Hz

 

freeze reference

 

 

 

 

 

 

 

 

Remote

 

maxRefPCT

reference/

 

setpoint

 

 

±200%

minRefPct

 

 

Process

 

min-max ref

±100%

control

 

 

Freeze

 

 

 

 

 

reference &

 

 

 

 

 

increase/

 

 

 

 

 

 

 

 

 

 

decrease

 

 

 

 

 

reference

 

 

Scale to

 

 

 

 

 

 

process

 

 

 

 

 

 

 

Input commands:

 

unit

 

 

 

 

Speed up/speed down

 

 

 

±200% Feedback handling

Remote reference in %

Illustration 21: Block Diagram Showing Remote Reference

The remote reference consists of:

Preset references.

External references (analog inputs and serial communication bus references).

The preset relative reference.

Feedback-controlled setpoint.

Up to 8 preset references can be programmed in the drive. The active preset reference can be selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. This external source is selected by 1 of the 3 reference source parameters (parameter 3-15 Reference 1 Source, parameter 3-16 Reference 2 Source, and parameter 3-17 Reference 3 Source). All reference resources and the bus reference are added to produce the total external reference. The external reference, the preset reference, or the sum of the 2 can be selected to be the active reference. Finally, this reference can by be scaled using parameter 3-14 Preset Relative Reference.

The scaled reference is calculated as follows:

Reference = X + X × Y

100

Where X is the external reference, the preset reference or the sum of these and Y is parameter 3-14 Preset Relative Reference in [%]. If Y, parameter 3-14 Preset Relative Reference, is set to 0%, the reference is not affected by the scaling.

3.2.8 Tuning the Drive Closed-loop

Once the drive's closed-loop controller has been set up, test the performance of the controller. Often, its performance may be acceptable using the default values of parameter 20-93 PI Proportional Gain and parameter 20-94 PI Integral Time. However, sometimes it may be helpful to optimize these parameter values to provide faster system response while still controlling speed overshoot.

3.2.9 Adjusting the Manual PI

Procedure

1.Start the motor.

Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983 | 29

VLT® Flow Drive FC 111

Design Guide

Product Overview

 

 

2.Set parameter 20-93 PI Proportional Gain to 0.3 and increase it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause oscillation.

3.Reduce the PI proportional gain until the feedback signal stabilizes.

4.Reduce the proportional gain by 40–60%.

5.Set parameter 20-94 PI Integral Time to 20 s and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the setpoint reference to attempt to cause oscillation.

6.Increase the PI integral time until the feedback signal stabilizes.

7.Increase the integral time by 15–50%.

3.3Ambient Running Conditions

3.3.1 Air Humidity

The drive has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 9.4.2.2 at 50 °C (122 °F).

3.3.2 Acoustic Noise or Vibration

If the motor or the equipment driven by the motor - for example, a fan - makes noise or vibrations at certain frequencies, configure the following parameters or parameter groups to reduce or eliminate the noise or vibrations:

Parameter group 4-6* Speed Bypass.

Set parameter 14-03 Overmodulation to [0] Off.

Switching pattern and switching frequency parameter group 14-0* Inverter Switching.

Parameter 1-64 Resonance Dampening.

3.3.2.1 Acoustic Noise

The acoustic noise from the drive comes from 3 sources:

DC-link coils.

Integral fan.

RFI filter choke.

Table 6: Typical Values Measured at a Distance of 1 m (3.28 ft) from the Unit

Enclosure size

Level [dBA](1)

H1

43.6

 

 

 

H2

50.2

 

 

 

H3

53.8

 

 

 

H4

64

 

 

 

H5

63.7

 

 

 

H6

71.5

 

 

 

H7

67.5 (75 kW (100 hp) 71.5 dB)

 

 

 

H8

73.5

 

 

 

H13

73

 

 

 

H14

75

 

 

 

 

 

 

1 The values are measured under the background of 35 dBA noise and the fan running with full speed.

30 | Danfoss A/S © 2021.04

AJ363928382091en-000101 / 130R0983

Loading...
+ 118 hidden pages