AK-PC 781 is complete regulating units for capacity control of
compressors and condensers in refrigeration systems. The controller is with oil management, heat recovery function and CO2
gas pressure control.
In addition to capacity control the controllers can give signals to
other controllers about the operating condition, e.g. forced closing of expansion valves, alarm signals and alarm messages.
The controller’s main function is to control compressors and
condensers so that operation all the time takes place at the
energy-optimum pressure conditions. Both suction pressure
and condensing pressure are controlled by signals from pressure
transmitters.
Capacity control can be carried out by suction pressure P0, media
temperature S4 or separate control pressure Pctrl (for cascade).
Among the dierent functions are:
- Capacity control of up to 8 compressors
- Up to 3 unloaders for each compressor
- Oil management. Either shared or individual for all of the compressor's oil valves. Receiver pressure control.
- Speed control of one or two compressors
- Up to 6 safety inputs for each compressor
- Option for capacity limitation to minimize consumption peaks
- When the compressor does not start, signals can be transmitted
to other controllers so that the electronic expansion valves will
be closed
- Regulation of liquid injection into suction line
- Start/stop of liquid injection in heat exchanger (cascade)
- MT/LT - coordination between controllers in cascade control
- Safety monitoring of high pressure / low pressure / discharge
temperature
- Capacity control of up to 8 fans
- Floating reference with regard to outside temperature
- Heat recovery function
- CO2 gas cooler control and receiver control
- Parallel compression on transcritical CO2 system
- Step coupling, speed regulation or a combination
- Safety monitoring of fans
- The status of the outputs and inputs is shown by means of lightemitting diodes on the front panel
- Alarm signals can be generated via data communication
- Alarms are shown with texts so that the cause of the alarm is
easy to see.
- Plus some completely separate functions that are totally independent of the regulation – such as alarm, thermostat ,pressure
and PI-regulating functions.
Examples
Traditional capacity control
Booster control with 2 controls
(For pure booster control without MT cooling, the intermediate pressure
must be connected to the receiver to prevent Pmin and Pmax cut-outs
during the start-up).
Heat recovery functions, controlling the condensing pressure and
receiver pressure of a CO2 plant
The great advantage of this series of controllers is that it can be
extended as the size of the plant is increased. It has been developed for refrigeration control systems, but not for any specic
application – variation is created through the read-in software and
the way you choose to dene the connections.
It is the same modules that are used for each regulation and the
composition can be changed, as required. With these modules
(building blocks) it is possible to create a multitude of various
kinds of regulations. But it is you who must help adjusting the
regulation to the actual needs – these instructions will assist you
to nd your way through all the questions so that the regulation
can be dened and the connections made.
Controller
Top part
Advantages
• The controller’s size can “grow” as systems grow
• The software can be set for one or more regulations
• Several regulations with the same components
• Extension-friendly when systems requirements are changed
• Flexible concept:
- Controller series with common construction
- One principle – many regulation uses
- modules are selected for the actual connection requirements
- The same modules are used from regulation to regulation
Extension modules
Bottom part
The controller is the cornerstone of the regulation. The module has inputs and
outputs capable of handling small systems.
• The bottom part – and hence the terminals – are the same for all controller types.
• The top part contains the intelligence with software. This unit will vary according
to controller type. But it will always be supplied together with the bottom part.
• In addition to the software the top part is provided with connections for data
communication and address setting.
Examples
A regulation with few connections can
be performed with the controller module
alone
If the system grows and more functions have to be controlled, the regulation can be
extended.
With extra modules more signals can be received and more relays cut in and out –
how many of them – and which – is determined by the relevant application.
If there are many connections one or more extension modules have to be mounted
Setup and operation of an AK controller must be accomplished via
the “AK-Service Tool” software program.
The program is installed on a PC, and setup and operation of
the various functions are carried out via the controller’s menu
displays.
Displays
The menu displays are dynamic, so that dierent settings in one
menu will result in dierent setting possibilities in other menus.
A simple application with few connections will give a setup with
few settings.
A corresponding application with many connections will give a
setup with many settings.
From the overview display there is access to further displays for
the compressor regulation and the condenser regulation.
At the bottom of the display there is access to a number of general
functions, such as “time table”, “manual operation”, “log function”,
“alarms”, and “service” (conguration).
Network linking
The controller can be linked up into a network together with other
controllers in an ADAP-KOOL® refrigeration control system. After
the setup operation can be performed at a distance with, say, our
software program type AKM.
Users
The controller comes supplied with several languages, one of
which can be selected and employed by the user. If there are several users, they may each have their choice of language. All users
must be assigned a user prole which either gives access to full
operation or gradually limits the operation to the lowest level that
only allows you “to see”.
Language selection is part of the service tool settings.
If the language selection is not available in the service tool for the
current regulator, English texts will be displayed.
External display
An external display can be tted in order for P0 (Suction) and Pc
(Condensing) readings to be displayed.
A total of 4 displays can be tted and with one setting it is possible to choose between the following readings: suction pressure,
suction pressure in temperature, Pctrl, S4, Ss, Sd, condenser pressure, condenser pressure in temperature, S7 gas cooler temperature, hot tap water at heat recovery and heat exchanger temperature at heat recovery.
A graphical display with control buttons can also be tted.
A number of light-emitting diodes makes it possible to follow the
signals that are received and transmitted by the controller.
Log
From the log function you can dene the measurements you wish
to be shown.
The collected values can be printed, or you may export them to a
le. You can open the le in Excel.
If you are in a service situation you can show measurements in a
trend function. The measurements are then made real-time and
displayed instantly.
■ Power
■ Comm
■ DO1 ■ Status
■ DO2 ■ Service Tool
■ DO3 ■ LON
■ DO4 ■ I/O Extension
■ DO5 ■ Alarm
■ DO6
■ DO7
■ DO8 ■ Service Pin
Slow ash = OK
Quick ash = answer from gateway
Constantly ON = error
Constantly OFF = error
Flash = active alarm/not cancelled
Constant ON = Active alarm/cancelled
Alarm
The display gives you an overview of all active alarms. If you wish
to conrm that you have seen the alarm you can cross it o in the
acknowledge eld.
If you want to know more about a current alarm you can click on it
and obtain an information display on the screen.
A corresponding display exists for all earlier alarms. Here you can
upload information if you need further details about the alarm
history.
Trouble-shooting
The controller contains a function that continuously follows
a number of measurements and deals with them. The result
indicates whether the function is OK or whether an error may be
expected within a given period of time (“the trip down the roller
coaster has started”). At this time an alarm is transmitted about
the situation – no error has appeared as yet, but it will come.
One example may be slow clogging-up of a condenser. When the
alarm comes the capacity has been reduced, but the situation is
not serious. There will be time to plan a service call.
This section describes how the controller is designed.
The controller in the system is based on a uniform connection
platform where any deviations from regulation to regulation is
determined by the used top part with a specic software and
by which input and output signals the relevant application will
require. If it is an application with few connections, the controller
module (top part with belonging bottom part) may be sucient.
If it is an application with many connections it will be necessary to
use the controller module plus one or more extension modules.
This section will give you a survey of possible connections plus
assistance in selecting the modules required by your actual ap-
• Controller module – capable of handling minor plant requirements.
• Extension modules. When the complexity becomes greater
and additional inputs or outputs are required, modules can be
attached to the controller. A plug on the side of the module will
transmit the supply voltage and data communication between
the modules.
• Top part
The upper part of the controller module contains the intelligence. This is the unit where the regulation is dened and where
data communication is connected to other controllers in a bigger network.
• Connection types
There are various types of inputs and outputs. One type may, for
example, receive signals from sensors and switches, another may
receive a voltage signal, and a third type may be outputs with
relays etc. The individual types are shown in the table below.
Extension module with additional analog inputs
• Optional connection
When a regulation is planned (set up) it will generate a need for
a number of connections distributed on the mentioned types.
This connection must then be made on either the controller
module or an extension module. The only thing to be observed
is that the types must not be mixed (an analog input signal must
for instance not be connected to a digital input).
• Programming of connections
The controller must know where you connect the individual
input and output signals. This takes place in a later conguration where each individual connection is dened based on the
following principle:
- to which module
- at which point (”terminals”)
- what is connected (e.g. pressure transmitter/type/
pressure range)
Extension module with additional
relay outputs and additional analog inputs.
External display for
suction pressure etc.
Bottom part
Controller with analog inputs and
relay outputs.
Top part
Extension module with
2x analog output signals
The module with additional relay outputs is
also available in a version where the top part
is provided with change-over switches so
that the relays can be overridden.
If the row of modules needs to
be interrupted due to length or
external positioning, a communication module should be used.
The module dimension is 72 mm.
Modules in the 100-series consist of one
module
Modules in the 200-series consist of two
modules
Controllers consist of three modules
The length of an aggregate unit = n x 72 + 8
There are several controllers in the series. The function is determined by the programmed software, but outwardly the controllers are identical – they all have the same connection possibilities:
11 analog inputs for sensors, pressure transmitters, voltage signals
and contact signals.
8 digital outputs, with 4 Solid state outputs and 4 relay outputs
Supply voltage
24 V a.c. or d.c. to be connected to the controller.
The 24 V must not be retransmitted and used by other controllers as it is not galvanically separated from inputs and outputs. In
other words, you must use a transformer for each controller. Class
II is required. The terminals must not be earthed.
The supply voltage to any extension modules is transmitted via
the plug on the right-hand side.
The size of the transformer is determined by the power requirement of the total number of modules.
The supply voltage to a pressure transmitter can be taken either
from the 5 V output or from the 12 V output depending on transmitter type.
PIN
Data communication
If the controller is to be included in a system, communication
must take place via the LON connection.
The installation has to be made as mentioned in the separate
instructions for LON communication.
Address setting
When the controller is connected to a gateway type AKA 245,
the controller’s address must be set between 1 and 119. (If it is a
system manager AK-SM .., then 1-999).
Service PIN
When the controller is connected to the data communication
cable the gateway must have knowledge of the new controller.
This is obtained by pushing the key PIN. The LED “Status” will ash
when the gateway sends an acceptance message.
Operation
The conguration operation of the controller must take place
from the software program “Service Tool”. The program must be
installed on a PC, and the PC must be connected to the controller
via the network plug on the front of the unit.
Light-emitting diodes
There are two rows with LED’s. They mean:
Left row:
• Voltage supply to the controller
• Communication active with the bottom PC board (red = error)
• Status of outputs DO1 to DO8
Right row:
• Software status (slow ash = OK)
• Communication with Service Tool
• Communication on LON
• Communication with AK-CM 102
• Alarm when LED ashes
- 2 LED’s that are not used
• “Service Pin” switch has been activated
Address
■ Power
■ Comm
■ DO1 ■ Status
■ DO2 ■ Service Tool
■ DO3 ■ LON
■ DO4 ■ I/O Extension
■ DO5 ■ Alarm
■ DO6
■ DO7
■ DO8 ■ Service Pin
Slow ash = OK
Quick ash = answer from gateway
Constantly ON = error
Constantly OFF = error
Flash = active alarm/not cancelled
Constant ON = Active alarm/cancelled
Keep the safety
distance!
Low and high
voltage must not
be connected to
the same output
group
A small module (option board) can be placed on the bottom part
of the controller. The module is described later in the document.
The supply voltage to the module comes from the previous module in the row.
AK-XM 204B only
Override of relay
Eight change-over switches at the front make it possible to override the relay’s function.
Either to position OFF or ON.
In position Auto the controller carries out the control.
Light-emitting diodes
There are two rows with LED’s. They mean:
Left row:
• Voltage supply to the controller
• Communication active with the bottom PC board (red = error)
• Status of outputs DO1 to DO8
Right row: (AK-XM 204B only):
• Override of relays
ON = override
OFF = no override
Fuses
Behind the upper part there is a fuse for each output.
AK-XM 204A AK-XM 204B
Max. 230 V
AC-1: max. 4 A (ohmic)
AC-15: max. 3 A (Inductive)
Keep the safety distance!
Low and high voltage
must not be connected to
the same output group
AK-XM 204B
Override of relay
Note
If the changeovers are used to override the compressor operation,
it is necessary to wire a safety relay into the circuit for oil management. Without this safety relay, the controller will fail to stop the
compressor if it should run out of oil. See Regulating functions.
The module contains:
8 analog inputs for sensors, pressure transmitters, voltage signals
and contact signals.
8 relay outputs.
Supply voltage
The supply voltage to the module comes from the previous module in the row.
AK-XM 205B only
Override of relay
Eight change-over switches at the front make it possible to override the relay’s function.
Either to position OFF or ON.
In position Auto the controller carries out the control.
Light-emitting diodes
There are two rows with LED’s. They mean:
Left row:
• Voltage supply to the controller
• Communication active with the bottom PC board (red = error)
• Status of outputs DO1 to DO8
Right row: (AK-XM 205B only):
• Override of relays
ON = override
OFF = no override
AK-XM 205A AK-XM 205B
max. 10 V
Fuses
Behind the upper part there is a fuse for each output.
Note
If the changeovers are used to override the compressor operation,
it is necessary to wire a safety relay into the circuit for oil management. Without this safety relay, the controller will fail to stop the
compressor if it should run out of oil. See Regulating functions.
Max. 230 V
AC-1: max. 4 A (ohmic)
AC-15: max. 3 A (Inductive)
AK-XM 205B
Override of relay
Keep the safety distance!
Low and high voltage
must not be connected to
the same output group
The module contains:
8 analog inputs for sensors, pressure transmitters, voltage signals
and contact signals.
4 outputs for stepper motors.
Supply voltage
The supply voltage to the module comes from the previous module in the row.
The supply voltage to the valves must be from a separate supply,
which must be galvanically separated from the supply for the
control range.
24 V d.c. +/-20%.
(Power requirements: 7.8 VA for controller + 1.3 VA per valve).
A UPS may be necessary if the valves need to open/close during a
power failure.
Light-emitting diodes
There is one row with LED’s. It indicate the following:
• Voltage supply to the module
• Communication active with the bottom PC board (red = error)
• Status of outputs step1 to step4
Separate voltage
supply is required
24 V d.c. 13 VA
The module is a real time clock module with battery backup.
The module can be used in controllers that are not linked up in
a data communication unit together with other controllers. The
module is used here if the controller needs battery backup for the
following functions
• Clock function
• Fixed times for day/night change-over
• Fixed defrost times
• Saving of alarm log in case of power failure
• Saving of temperature log in case of power failure
Connection
The module is provided with plug connection.
Placing
The module is placed on the PC board inside the top part.
Point
No point for a clock module to be dened – just connect it.
Working life of the battery
The working life of the battery is several years – even if there are
frequent power failures.
An alarm is generated when the battery has to be replaced.
After the alarm there are still several months of operating hours
left in the battery.
Display of important measurements from the controller, e.g. ap-
pliance temperature, suction pressure or condensing pressure.
Setting of the individual functions can be performed by using the
display with control buttons.
It is the controller used that determines the measurements and
settings that can occur.
Connection
The extension module is connected to the controller module via
a cable with plug connections. You have to use one cable per
module. The cable is supplied in various lengths.
Both types of display (with or without control buttons) can be
connected to either display output A, B, C and D.
Ex.
A: P0. Suction pressure in °C.
B: Pc. Condensing pressure in °C.
When the controller starts up, the display will show the output
that is connected.
- - 1 = output A
- - 2 = output B
etc.
EKA 163B EKA 164B
Placing
The extension module can be placed at a distance of up to 15 m
from the controller module.
Point
No point has to be dened for a display module – you simply connect it.
Graphic display AK-MMI
Function
Setting and display of values in the controller.
Connection
The display connects to the controller via a cable with plug connections. Use plug RJ45 to connect to the controller; the same
plug is also used for service tool AK-ST 500.
Supply voltage
24 V a.c. / d.c. 1.5 VA.
Placing
The display can be placed at a distance of up to 3 m from the
controller.
EKA 166
Point
No point has to be dened for a display – you simply connect it.
The module is a new communication module, meaning the row of
extension modules can be interrupted.
The module communicates with the regulator via data communication and forwards information between the controller and the
connected extension modules.
Connection
Communication module and controller tted with RJ 45 plug connectors.
Nothing else should be connected to this data communication; a
maximum of 5 communication modules can be connected to one
controller.
The communication module can be used only with controllers of
the type AK-PC 781.
Communication cable
One metre of the following is enclosed:
ANSI/TIA 568 B/C CAT5 UTP cable w/ RJ45 connectors.
Positioning
Max. 30 m from the controller
(The total length of the communication cables is 30 m)
Max. 32 VA
Supply voltage
24 volt AC or DC should be connected to the communication
module.
The 24 V can be sourced from the same supply that supplies the
controller. (The supply for the communication module is galvanically separated from the connected extension modules).
The terminals must not be earthed.
The power consumption is determined by the power consumption of the total number of modules.
The controller strand load must not exceed 32 VA.
Each AK-CM 102 strand load must not exceed 20 VA.
Point
Connection points on the I/O modules should be dened as if the
modules were an extension of each other.
Address
The address for the rst communication module should be set to
1. Any second module should be set to 2. A maximum of 5 modules can be addressed.
Termination
The termination switch on the nal communication module
should be set to ON.
The controller should permanently be set to = ON.
Warning
Additional modules may only be installed following the installation of the nal module. (Here following module no. 11; see the
sketch.)
After conguration, the address must not be changed.