Complete refrigeration appliance control with great flexibility to
adapt to all types of refrigeration appliances and cold storage
rooms.
Advantages
• Energy optimisation of the whole refrigeration appliance
• One controller for several different refrigeration appliances
• Integrated display at the front of the controller
• Quick set-up with predefined settings
• Built-in data communication
• Built-in clock function with power reserve
Principle
The temperature in the appliance is registered by one or two
temperature sensors which are located in the air flow before the
evaporator (S3) or after the evaporator (S4) respectively. A setting
for thermostat, alarm thermostat and display reading determines
the influence the two sensor values should have for each individual function.
In addition product sensor S6, which can be optionally placed in
the appliance, can be used to register the temperature near the
required product in a certain place within the appliance.
The temperature of the evaporator is registered with the S5 sensor
which can be used as a defrosting sensor.
In addition to the outlet to the electronic injection valve of the
type AKV, the controller has 5 relay outputs which are defined by
the use selected – the individual usage options are described in
detail on page 12.
Functions
• Day/night thermostat with ON/OFF or modulating principle
• Product sensor S6 with separate alarm limits
• Switch between thermostat settings via digital input
• Adaptive control of superheat
• Adaptive defrosting based on evaporator performance
• Start of defrost via schedule, digital input or network
• Natural, electric or hot gas defrost
• Stop of defrost on time and/or temperature
• Coordination of defrosting among several controls
• Pulsing of fans when thermostat is satisfied
• Case cleaning function for documentation of HACCP procedure
• Rail heat control via day/night load or dew point
• Door function
• Control of two compressors
• Control of night blinds
• Light control
• Heat thermostat
• Factory calibration that will guarantee a better measuring
accuracy than stated in the standard EN ISO 23953-2 without
subsequent calibration (Pt 1000 ohm sensor)
• Integrated MODBUS communication with the option of mounting a LonWorks / DANBUSS communication card
Here is an overview of the controller’s usage options.
A setting will configure input and outputs so that the controller’s
operation interface is directed at the selected application.
The current settings for the respective uses can be found on page
28.
Application 1-8
These uses are applied to standard appliances or cold storage
rooms with one valve, one evaporator and one refrigeration section.
The sensors are used according to standard principles.
The output functions change depending on the selected application.
Application 9
This use is for refrigeration appliances with one valve, two evaporators and two refrigeration sections, each with its own temperature measurement.
There are shared alarm limits but individual alarm delays for each
cooling section.
Display for each section.
Product sensor S6 cannot be used.
Application 10
This use is for refrigeration appliances with one valve, one evaporator and two refrigeration sections.
There are separate alarm limits and alarm delays for each cooling
section.
Display for each section.
Liquid injection in the evaporator is controlled by an electronic
injection valve of the type AKV. The valve functions as both expansion valve and solenoid valve. The valve opens and closes using
signals from the controller.
The function contains an adaptive algorithm which independently
adjusts the valve’s opening so that the evaporator constantly supplies optimum refrigeration.
Superheat is measured via
• Pressure sensor P0 and temperature sensor S2
For this use a correct measurement of superheat is achieved
under all conditions which ensures a very robust and precise
control.
The signal from one pressure transmitter can be used by several
controllers, but only if there is no significant pressure difference
between the evaporators in question.
There are two parallel settings for superheat:
1. Dry expansion, which does not allow liquid flow (normal state)
2. Flooded evaporator, which allows liquid flow. This type of
control requires that the controller receives an on/off signal
from (for example) a tank in the suction line. A level switch in
the tank will register when the high limit is exceeded. When this
happens, the controller will switch to dry expansion, and then
back to flooded when the liquid level has dropped. The function
is defined in setting o02, o37 or o84.
Warning
Accidental actuation may allow liquid throughput to the compressor.
It is the installer’s responsibility to ensure that signal loss to the controller will
not result in liquid throughput to the compressor.
Danfoss accepts no responsibility for damage resulting from inadequate
installation.
Temperature control
The temperature in the appliance is registered by one or two
temperature sensors which are located in the air flow before the
evaporator (S3) or after the evaporator (S4) respectively. A setting
for the thermostat, alarm thermostat and display reading determines how much the two sensor values should influence each
individual function, e.g. 50% will produce an equal value from
both sensors.
The actual temperature control can take place in two ways: as an
ordinary ON/OFF regulation with a differential, or as a modulating control there the temperature variation will not be nearly as
great as in ON/OFF control. There is however a limit to the use of
a modulating control as it can only be used in central plant. In a
decentralised plant the thermostat function with ON/OFF control
should be selected.
In a central plant the thermostat function may either be selected
for ON/OFF control or modulating control.
Temperature monitoring
Just as is possible for the thermostat, the alarm monitoring can be
set with a weighting between S3 and S4 so that you can decide
how much the two sensor values should influence the alarm
monitoring. Minimum and maximum limits can be set for alarm
temperature and time delays. A longer time delay can be set for
high temperature alarms. This delay is active after defrosting,
appliance cleaning, appliance shutdown and start-up.
Thermostat bands can be used beneficially for appliances where
different product types are stored which require different temperature conditions. It is possible to change between the two
different thermostat bands via a contact signal on a digital input.
Separate thermostat and alarm limits can be set for each thermostat band – also for the product sensor.
Night setback of thermostat value
In refrigeration appliances there may be big load differences
between the shop’s opening and closing hours, especially if night
lids/blinds are used. The thermostat reference may be raised here
without it having any effect on the product temperature.
Change-over between day and night operation can take place, as
follows:
• via an external switch signal.
• via a signal from the data communication system.
Product sensor
A separate optional product sensor S6, which may be placed
in the appliance, can also be used and which can register and
monitor the temperature in the warmest part of the appliance.
There are separate alarm limits and time delays for the product
sensor.
The function is not available in application 9.
Appliance cleaning
This function makes it easy for the shop’s staff to carry out a
cleaning of the appliance according to a standard procedure.
Appliance cleaning is activated via a signal – as a rule via a key
switch placed on the appliance.
Appliance cleaning is carried out via three phases:
1 - at the first activation the refrigeration is stopped, but the fans
keep on operating in order to defrost the evaporators. ”Fan” is
shown on the display.
2 - at the second activation the fans are also stopped and the
appliance can now be cleaned. ”OFF” is shown on the display.
3 - At the third activation refrigeration is recommenced. The
display will show the actual appliance temperature, (o97
setting).
Documentation
When appliance cleaning is activated a cleaning alarm is transmitted to the normal alarm recipient. A later processing of these
alarms will document that the appliance has been cleaned as
often as planned.
Alarm monitoring
There are no temperature alarms during appliance cleaning.
Appliance shut-down
The function closes the AKV valve and all outputs are switched off.
The cooling appliance is stopped like the “Main switch”, but this
happens without an “A45 standby alarm”.
The function can be enabled by a switch on the DI input or via a
setting through data communication.
Depending on the application you may choose between the following defrost methods:
Natural: Here the fans are kept operating during the defrost
Electric: The heating element is activated
Hotgas: Here the solenoid valves are controlled so that the
hotgas can flow through the evaporator
Defrost sequence
1) Pump down
2) Defrost
3) Waiting position after defrost
4) Draining (drain delay. Hotgas only)
5) Drip off
6) Delay of fan
Hot gas defrost (application 6 only)
This type of connection can be used on systems with hotgas
defrost, but only in small systems in, say, supermarkets – the
functional content has not been adapted to systems with large
charges
Relay 2 is used for suction valve
Relay 4’s change-over function can be used by the bypass valve
and/or the hotgas valve.
If the valves PMLX and GPLX are used, the delay time “d23” will
have to be properly set.
During hot gas defrosting, it is not possible to start a manual
defrosting cycle with a touch on the controller’s lower button. A
manual defrost can be started with a signal on a DI input.
Hot gas application
Drip tray heating element
It is possible to control a heating element in the drip tray for
hot gas defrosting. When defrosting is commenced, the heating
element is activated. The heating element remains activated until
a set time after defrosting has ended by time or temperature.
Start of defrost
A defrost can be started in different ways
Interval: Defrost is started at fixed time intervals, say, every
eighth hour. An interval must ALWAYS be set to
a "higher" value than the period set between two
defrostings when a schedule or network signal is used.
Refrigeration time: Defrost is started at fixed refrigeration time
intervals, in other words, a low need for refrigeration will
”postpone” the defrost
Schedule: Here defrost can be started at fixed times of the
day and night. However, max. 6 times
Contact: Defrost is started with a contact signal on a digital input
Network: The signal for defrost is received from a system unit
via the data communication
Adaptive defrost: Here defrosting is started based on intelligent
registering of evaporator performance.
Manual: An extra defrost can be activated from the controller’s
lower-most button (however not by hot gas defrost). Or
it can be started via a parameter setting.
All the mentioned methods can be used at random – if just of
them is activated a defrost will be started.
Stop of defrost
Defrosting can be stopped by either:
• Time
• Temperature (with time as safety).
Compressor
If the defrosting method is set to “Hotgas,” the compressor will be
“On” during the defrost cycle.
Fans
The fans can be stopped or operated during defrosting. They
can also run and then be stopped at a set temperature. The
temperature signal is obtained from the defrost stop temperature.
There are two ways in which coordinated defrost can be arranged.
Either with wire connections between the controllers or via data
communication
Wire connections
The digital input DI2 is connected between the current controllers.
When one controller starts a defrost all the other controllers will
follow suit and likewise start a defrost. After the defrost the individual controllers will move into waiting position. When all are in
waiting position there will be a change-over to refrigeration.
Coordination via data communication
Here the system unit handles the coordination.
The controllers are gathered in defrosting groups and the system
unit ensures that defrosting is started in the group according to a
weekly schedule.
When a controller has completed defrosting, it sends a message
to the system unit and then goes into a waiting position. When
every controller in the group is in a waiting position, refrigeration
is again permitted in all the individual controllers.
Defrost on demand
1 Based on refrigeration time
When the aggregate refrigeration time has passed a fixed time,
a defrost will be started. (The function is not activated if the
adaptive defrosting has been set to 2, 3 or 4.)
Adaptive defrosting:
This function assesses the need for defrosting on the basis of the
airflow through the appliance. It may even start a defrost and may
even cancel a scheduled defrost.
The following functions can be selected:
0 Off
1 Monitoring
A value is calculated for the evaporator air flow here.
An alarm will be triggered in the case of icing up or flash gas.
2 Adaptive day (can replace one defrost per day).
This setting can be used if the appliance does not have a blind or
lid during the day, and blinds or lids are used at night.
A value is calculated for the day evaporator air flow.
The evaporator is monitored during the day only, and the next
scheduled defrost is carried out if required.
If the function does not require a defrost at the time of the
scheduled defrost during the day, the defrost will not be carried
out.
All scheduled defrosts are carried out during the night.
3 Adaptive day and night (can replace defrosting both day and
night).
This setting can be used if the appliance has a door or a sliding
door, or it is completely uncovered both day and night.
The setting is also recommended for rooms.
A value is calculated for the evaporator air flow.
The evaporator is monitored, and the next scheduled defrost will
be carried out as required.
If the function does not require a defrost at the time of the
scheduled defrost, the defrost will not be carried out.
Max. 10
System manager
4 Full adaptive (can start an extra defrost).
This setting can be used if the appliance has a door or a sliding
door, or it is completely uncovered both day and night. The
setting is also recommended for rooms.
A value is calculated for the evaporator air flow.
The evaporator is monitored, and a defrost will be carried out as
required regardless of schedules.
All scheduled defrosts will also be carried out, so it is
recommended to incorporate as few scheduled ones as possible.
Adaptive defrosting requires the following connections:
- Expansion valve type AKV
- Temperature signal from both S3 and S4
- Temperature signal from the condensing pressure Pc which is
distributed via the network from a system manager. The value
should show the pressure in front of AKV valve.On plants where
each part is not representative is the signal from system manager not be used. Here, the controller uses a constant.
NOTE. The S3 and S4 sensors must be placed in the air flow/chan-
nel immediately before/after the evaporator.
Note
The function "Adaptive defrost” should only be activated when the
evaporator runs under normal operational conditions.
Min. time between defrosts
There is a 2 hours minimum time between defrosts.
This avoids that planned defrosts in accordance with the weekly
schedule or DI signal are carried out immediately after a defrost
on demand has been carried out. The time applies from when
a defrost on demand has been completed to when a planned
defrost is again permitted. The defrost on demand will not start
defrosting with a shorter interval than the 2 hours either.
Melting function
This function will stop the air flow in the evaporator from being reduced by frost created by uninterrupted operation for a long time.
The function is activated if the thermostat temperature has
remained in the range between -5°C and +10°C for a longer
period than the set melting interval. The refrigeration will then be
stopped during the set melting period. The frost will be melted
Real-time clock
The controller has a built-in real-time clock which can be used to
start defrosts. This clock has a power reserve of four hours.
Expires the power reserve, the alarm E6 will occur. If this happens,
the clock must be checked / reset.
If the controller is equipped with data communication, the clock
will automatically be updated from the system unit.
so that the air flow and hence the evaporator’s capacity will be
greatly improved.
The two compressors must be of the same size. When the controller demands refrigeration it will first cut in the compressor with
the shortest operating time. After the time delay the second
compressor will be cut in.
When the temperature has dropped to ”the middle of the differential”, the compressor with the longest operation time will be cut
out.
The running compressor will continue until the temperature has
reached the cutout value. Then it will cut out. When the temperature again reaches the middle of the differential, a compressor will
again be started.
If one compressor cannot maintain the temperature within the
differential, the second compressor will also be started.
If one of the compressors has run on its own for two hours, the
compressors will be changed over so that operational time is balanced.
The two compressors must be of a type that can start up against a
high pressure.
The compressors’s settings for ”Min On time” and ”Min Off time”
will always have top priority during normal regulation. But if one
of the override functions is activated, the ”Min On time” will be
disregarded.
Railheat
It is possible to pulse-control the power to the rail heat in order to
save energy. Pulse control can either be controlled according to
day/night load or dew point.
Pulse control according to day and night
Various ON periods can be set for day and night operation.
A period time is set as well as the percentage part of the period in
which the rail heat is ON.
Pulse control according to dew point
In order to use this function a system manager of the type AK-SM
is required which can measure dew point and distribute the current dew point to the appliance controllers. For this the rail heat’s
ON period is controlled from the current dew point.
Two dew point values are set in the appliance control:
• One where the effect must be max. i.e.100%. (o87)
• One where the effect must be min. (o86).
At a dew point which is equal to or lower than the value in 086,
the effect will be the value indicated in o88.
In the area between the two dew point values the controller will
manage the power to be supplied to the rail heat.
During defrosting
During defrosting rail heat will be active, as selected in setting
d27.
To obtain energy savings it is possible to pulse control the power
supply to the fans at the evaporators.
Pulse control can be accomplished in one of the following ways:
- during the thermostat’s cutout period (cold room)
- during night operation and during the thermostat’s cutout pe-
riod (appliance with night lid)
(The function is not current when r14=2, i.e. modulating
regulation).
A period of time is set as well as the percentage of this period of
time where the fans have to be operating.
Cutout of fans during plant breakdowns
If the refrigeration in a breakdown situation stops, the
temperature in the cold room may rise quickly as a result of the
power supply from large fans. In order to prevent this situation the
controller can stop the fans if the temperature at S5 exceeds a set
limit value.
Light function
The function can be used for controlling the light in a refrigeration
appliance or in a cold room. It can also be used for controlling a
motorised night blind.
The light function can be defined in three ways:
- the light is controlled via a signal from a door contact. Together
with this function there is a time delay so that the light is kept on
for a period of 2 minutes after the door has been closed.
- the light is controlled via the day/night function
- the light is controlled via the data communication from a system
unit.
Here there are two operational options if data communication
should fail:
- The light can go ON
- The light can stay in its current mode.
The light load must be connected to the NC switch on the relay.
This ensures that the light remains on in the appliance if power to
the controller should fail.
The light is switched off when "r12" (Main switch) is set to off (see
o98).
The light is switched off when the appliance cleaning function is
activated.
Period time
Night blind
Motorised night blind can be controlled automatically from the
controller. The night blinds will follow the status of the light
function. When the light is switched on, the night blinds opens
and when the light is switched off, the night blinds close again.
When the night blinds are closed, it is possible to open them using
a switch signal on the digital input. If this input is activated, the
night blinds will open and the refrigeration appliance can be filled
with new products. If the input is activated again, the blinds close
again.
When the night blind function is used, the thermostat function
can control with different weighting between the S3 and S4
sensors. A weighting during day operation and another when the
blind is closed.
(The S4% night setting is not affected by the night blind function.)
A night blind is open when the appliance cleaning function is
activated.
A setting can define that the night blind is open when "r12" (Main
switch) is set to off (see o98).
When the night blind rolls down, the fan will be stopped for
2 minutes. The night blind can thereby roll down to the correct
position.
There are two digital inputs DI1 and DI2 with contact function and
one digital input DI3 with high voltage signal.
They can be used for the following functions:
- Readout of contacts position via data communication
- Door contact function with alarm
- Starting a defrost
- Main switch - start/stop of cooling
- Night setback
- Thermostat bands switch
- General alarm monitoring
- Case cleaning
- Appliance shutdown
- Forced cooling
- Override of night blinds
- Allow flooded evaporator
- Coordinated defrost (DI2 only)
- Forced closing of valve (DI3 only)
- Refrigerant leak alarm (DI1 and DI2 only)
Forced closing
The AKV valves can be closed with an external signal ( "Forced
closing").
The function must be used in connection with the compressor’s
safety circuit, so that there will be no injection of liquid into the
evaporator when the compressor is stopped by the safety controls. (However not at low pressure – LP).
If a defrost cycle is in progress, the forced closing status will not
be re-established until the defrost is completed. Otherwise, the
defrost cycle is stopped immediately once the signal is received.
The function is defined in o90.
The signal can be received from the DI3-input or via the data communication.
During a forced closing the fans can be defined to be stopped or
in operation.
Door contact
The door contact function can via the digital inputs be defined for
two different applications:
Alarm monitoring
The controller monitors the door contact and delivers an alarm
message if the door has been opened for a longer period than
the set alarm delay.
Alarm monitoring and stop of refrigeration
When the door is opened the refrigeration is stopped, i.e. the
injection, the compressor and the fan are stopped and light
switch on.
If the door remains open for a longer time than the set restart
time, refrigeration will be resumed. This will ensure that
refrigeration is maintained even if the door is left open or if the
door contact should be defective. If the door remains open for
a longer period than the set alarm delay an alarm will also be
triggered.
Heating function (App. 8 only)
The heating function is used to prevent the temperature
becoming too low, e.g. in a cutting room, etc. The limit for when
the heating function cuts off is set as an offset value under the
current cutout limit for the refrigeration thermostat. This ensures
that refrigeration and heating do not occur simultaneously.
The difference for the heating thermostat has the same value
as for the refrigeration thermostat. To prevent that the heating
thermostat cuts in during short-term drops in air temperature a
time delay can be set for when to change from refrigeration to
heating.
The controller has fixed built-in MODBUS data communication.
If there is a requirement for a different form of data
communication, a Lon RS 485 / DANBUSS module can be inserted
in the controller.
The connection must then be to terminal RS 485.
(To use a Lon RS 485 module and gateway type AKA 245 the
module must be Version 6.20 or higher.)
Display
The controller has one plug for a display. Here display type EKA
163B or EKA 164B (max. length 15m) can be connected.
EKA 163B is a display for readings.
EKA 164B is both for readings and operation.
The connection between display and controller may be with a
cable which has a plug at both ends.
If the distance between display and controller is greater than 15
m, the connection must take another form.
An extra module must also be mounted in the controller if data
communication is used.
The built-in MODBUS data communication is used so that the
display connection and the data communication to the other
controllers must take place via a module. The module can be:
Lon RS 485 / DANBUSS or MODBUS.
When a display is to be connected to the built-in MODBUS, the
display can advantageously be changed to one of the same type,
but with Index A (version with screw terminals).
The controllers address must be set higher than 0 in order for the
display to be able to communicate with the controller.
If connection of two displays is required, one must be connected
to the plug (max. 15 m) and the other must then be connected to
the fixed data communication.
(In application 9 and 10, the MODBUS display will show values for
the B section.)
! Address
o03 > 0
Important
All connections to the data communication MODBUS / DANBUSS
and RS 485 must comply with the requirements for data
communication cables. See literature: RC8AC.
Override
The controller contains a number of functions which can be used together with the override function in the master gateway/system
manager.
Function via data communicationFunction in gateway/system managerUsed parameters in AK-CC 550B
Start of defrostingDefrost control / Time schedule / Defrost group--- Def start
Here is a survey of the controller’s field of application.
A setting will define the relay outputs so that the
controller’s interface will be targeted to the chosen
application.
On page 28 you can see the relevant settings for the
respective wiring diagrams.
S3 and S4 are temperature sensors. The application will determine whether
either one or the other or both sensors are to be used. S3 is placed in the air
flow before the evaporator. S4 after the evaporator.
A percentage setting will determine how the control is to be based. S5 is a
defrost sensor and is placed on/in the fins of the evaporator.
S6 is a product sensor.
DI1, DI2 and DI3 are contact functions that can be used for one of the following functions: door function, alarm function, defrost start, external main
switch, night operation, change of thermostat reference, appliance cleaning,
forced refrigeration or coordinated defrost. DI3 has a 230 V input. See the
functions in settings o02, o37and o84.
= O61 setting
General:
The ten uses are all adapted for commercial
refrigeration systems in the form of either
refrigeration appliances or cold storage rooms.
In general all have outputs for:
• AKV valve
• Fan
• Defrost
In addition they have different uses and thereby
input and outputs.
Application 1-4
Standard applications.
This is for standard use where the vital difference
is only different combinations of the following
functions/outputs: