Cirrus Logic EP7309 User Manual

FEATURES

LCD
Controller
Boot ROM
MaverickKey
TM
ARM720T
ARM7TDMI CPU Core
MMU
8 KB
Cache
Write
Buffer
Internal Data Bus
EPB Bus
SRAM &
FLASH I/F
On-chip SRAM
48 KB
ICE-JTAG
Clocks &
Timers
Keypad&
Touch
Screen I/F
Interrupts,
PWM & GPIO
Bus
Bridge
(2) UARTs
w/ IrDA
Power
Management
Serial
Interface
Digital
Audio
Interface
ARM720T Processor
— ARM7TDMI CPU — 8 KB of four-way set-associative cache — MMU with 64-entry TLB — Thumb code support enabled
Ultra low power
— 90 mW at 74 MHz typical — 30 mW at 18 MHz typical — 10 mW in the Idle State — <1 mW in the Standby State
Advanced audio decoder/decompression capability
— Supports bit streams with adaptive bit rates — Allows for support of multiple audio decompression
algorithms (MP3, WMA, AAC, ADPCM, Audible, etc.)
High-performance,
Low-power, System-on-chip
with Enhanced
Digital Audio Interface

OVERVIEW

The Maverick™ EP7309 is designed for ultra-low-power applications such as digital music players, internet appliances, smart cellular phones or any hand-held device that features the added capability of digital audio decompression. The core­logic functionality of the device is built around an ARM720T processor with 8 KB of four-way set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Microsoft Windows® CE and Linux®.
®
BLOCK DIAGRAM
http://www.cirrus.com
(cont.)
(cont.)
USER INTERFACE
SERIAL PORTS
MEMORY AND STORAGE
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) MAR ‘11
DS507F2
EP7309
High-Performance, Low-Power System on Chip
FEATURES (cont)
Dynamically programmable clock speeds of 18, 36, 49, and
74 MHz
48 KB of on-chip SRAM
MaverickKey
IDs — 32-bit unique ID can be used for SDMI compliance — 128-bit random ID
LCD controller
— Interfaces directly to a single-scan panel monochrome
STN LCD
— Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
Full JTAG boundary scan and Embedded ICE
support
Integrated Peripheral Interfaces
— 8/32/16-bit SRAM/FLASH/ROM Interface — Digital Audio Interface providing glueless interface to
low-power DACs, ADCs and CODECs
— Two Synchronous Serial Interfaces (SSI1, SSI2)
OVERVIEW (cont.)
— CODEC Sound Interface —88 Keypad Scanner — 27 General Purpose Input/Out put pins — Dedicated LED flasher pin from the RTC
Internal Peripherals
— Two 16550 compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — T wo general purpose 16-bit timers — Interrupt Controller — Boot ROM
Package
—208-Pin LQFP —256-Ball PBGA
The fully static EP7309 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS process
The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states: operating, idle and standby.
MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal‚ CS43L41/42/43 low-power audio DACs and the Crystal‚ CS53L32 low-power ADC. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions.
Simply by adding desired memory and peripherals to the highly integrated EP7309 completes a low-power system solution. All necessary interface logic is integrated on-chip.
2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES ..................................................................................................................................................................2
OVERVIEW..................................................................................................................................................................2
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID .....................................................................................................................................6
Memory Interfaces .............................. ... .... ... ... ... ... .... ... ....................................... ... ... ... .... .....................................6
Digital Audio Capability ... ...................................... .... ... ... ... .... ... ... ... ......................................................................6
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................6
Digital Audio Interface (DAI) .. ... .... ... ... ... .......................................... .... ... ... ... ... .... ... ... ... .........................................7
CODEC Interface ..... ... .... ... ... ... .... ... ... ... .... ... ....................................... ... ... ... ... .... ... ... ... .... .....................................7
SSI2 Interface ........................................................................................................................................................7
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
Interrupt Controller ................................................................................................................................................8
Real-Time Clock ....................................................................................................................................................8
PLL and Clocking ..................................................................................................................................................9
DC-to-DC converter interface (PWM) ....................................................................................................................9
Timers ...................................................................................................................................................................9
General Purpose Input/Output (GPIO) ..................................................................................................................9
Hardware debug Interface .....................................................................................................................................9
Internal Boot ROM ........................... ... ... .... ... ....................................... ... ... ... ... .... ... ... ..........................................10
Packaging ..................................... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ... ....... .............................................10
Pin Multiplexing ...................................................................................................................................................10
System Design ....................................................................................................................................................11
ELECTRICAL SPECIFICATIONS .................................................... ................. ................ ................ .12
Absolute Maximum Ratings .................................................................................................................................12
Recommended Operating Conditions .................................................................................................................12
DC Characteristics ....................................... ... ....................................... ... ... ... .... ... ... ... .... ...................................12
Timings ........................................................................................... .............. ............................ ..........14
Timing Diagram Conventions ...................... ....................................... ... .... ... ... ... .... ... ... ... ... .... ... ................14
Timing Conditions ..................... ... .... ... ... ... ... ....................................... ... .... ... ... ... .... ... ... .............................14
Static Memory ......................................................................................................................................................15
Static Memory Single Read Cycle .............................................................................................................16
Static Memory Single Write Cycle ..............................................................................................................17
Static Memory Burst Read Cycle ...............................................................................................................18
Static Memory Burst Write Cycle ...............................................................................................................19
SSI1 Interface ......................................................................................................................................................20
SSI2 Interface ......................................................................................................................................................21
LCD Interface ......................................................................................................................................................22
JTAG Interface ................................ ... ... ....................................... ... .... ... ... ... ... .... ................................................23
Packages ...................................................................................................................... .............. ........24
208-Pin LQFP Package Characteristics ..............................................................................................................24
208-Pin LQFP Package Specifications ......................................................................................................24
208-Pin LQFP Pin Diagram .......................................................................................................................25
208-Pin LQFP Numeric Pin Listing ............................................................................................................26
256-Ball PBGA Package Characteristics ............................................................................................................29
256-Ball PBGA Package Specifications ....................................................................................................29
256-Ball PBGA Pinout (Top View)) ............................................................................................................30
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 3
EP7309
High-Performance, Low-Power System on Chip
256-Ball PBGA Ball Listing ........................................................................................................................ 30
JTAG Boundary Scan Signal Ordering ............ ... ... ... ... .......................................... .... ... ...................................... 34
CONVENTIONS .................................................................................................................................39
Acronyms and Abbreviations .............................................................................................................................. 39
Units of Measurement ......................................................................................................................................... 39
General Conventions .......................................................... ... ... .... ... ... ... .... ... ... ... ... ............................................. 40
Pin Description Conventions ............................................................................................................................... 40
.................................................................................................................................................................. 40
Ordering Information .......................................................................................................................41
Environmental, Manufacturing, & Handling Information .............................................................41
Revision History ..............................................................................................................................42
4 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Maximum EP7309 Based System ....... ... ....................................... ... ... ... .... ................................................11
Figure 2. Legend for Timing Diagrams .........................................................................................................................14
Figure 3. Static Memory Single Read Cycle Timing Measurement ...............................................................................16
Figure 4. Static Memory Single Write Cycle Timing Measurement .................. ................................... ..........................17
Figure 5. Static Memory Burst Read Cycle Timing Measurement ................................................................................18
Figure 6. Static Memory Burst Write Cycle Timing Measurement ................................................................................19
Figure 7. SSI1 Interface Timing Measurement .............................................................................................................20
Figure 8. SSI2 Interface Timing Measurement .............................................................................................................21
Figure 9. LCD Controller Timing Measurement ............................................................................................................22
Figure 10. JTAG Timing Measurement ........................ .............................................................. ...................................23
Figure 11. 208-Pin LQFP Package Outline Drawing ....................................................................................................24
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................25
Figure 13. 256-Ball PBGA Package ..............................................................................................................................29
List of Tables
Table 1. Power Management Pin Assignments ..............................................................................................................6
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6
Table 3. Universal Asynchronous Receiver/Transmitters Pin Assignments ....................... ... .... ... ... ... ... .... ... ... ... .. ..........7
Table 4. DAI Interface Pin Assignments .........................................................................................................................7
Table 5. CODEC Interface Pin Assignments ..................................................................................................................7
Table 6. SSI2 Interface Pin Assignments .......................................................................................................................7
Table 7. Serial Interface Pin Assignments ......................................................................................................................8
Table 8. LCD Interface Pin Assignments ........................................................................................................................8
Table 9. Keypad Interface Pin Assignments ................................ .... ... ... ... .... ... ... ... .........................................................8
Table 10. Interrupt Controller Pin Assignments ..............................................................................................................8
Table 11. Real-Time Clock Pin Assignments ............ ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...............................9
Table 12. PLL and Clocking Pin Assignments ................................................................................................................9
Table 13. DC-to-DC Converter Interface Pin Assignments .................... ................................ .........................................9
Table 14. General Purpose Input/Output Pin Assignments ............................................................................................9
Table 15. Hardware Debug Interface Pin Assignments ..................................................................................................9
Table 16. LED Flasher Pin Assignments ............... ... ... ... .... ... ... ... .... ... ....................................... ... ... ...............................9
Table 17. DAI/SSI2/CODEC Pin Multiplexing ............................................... ................................................................10
Table 18. Pin Multiplexing ............... ... .... ... ....................................................................................................................10
Table 19. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................26
Table 20. 256-Ball PBGA Ball Listing ...........................................................................................................................30
Table 21. JTAG Boundary Scan Signal Ordering ........................ .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................34
Table 22. Acronyms and Abbreviations .................... ... ... .... ... .......................................... ... ... .... ... ................................39
Table 23. Unit of Measurement .......... .... ... ... ....................................... ... ... .... ... ... ... ... .... ... ... ... .......................................39
Table 24. Pin Description Conventions ............... ... ... ... ... .... ... ... .......................................... ... .......................................40
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 5
EP7309
High-Performance, Low-Power System on Chip

Processor Core - ARM720T

The EP7309 incorporates an ARM 32-bit RISC microcontroller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include:
ARM (32-bit) and Thumb (16-bit compressed) instruction sets
Enhanced MMU for Microsoft Windows CE and other operating systems
8 KB of 4-way set-associative cache.
Translation Look Aside Buffers with 64 Translated Entries

Power Management

The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V allowing the device to achieve a performance
level equivalent to 60 MIPS. The device has three basic power states:
• Operating — This state is the full performance state. All the clocks and peripheral logic are enabled.
• Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press.
• Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor.
Pin Mnemonic I/O Pin Description
BATOK I Battery ok input
nEXTPWR I
nPWRFL I Power fail sense input nBATCHG I Battery changed sense input
Table 1. Power Management Pin Assignments
External power supply sense input

MaverickKey™ Unique ID

MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7309 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7309 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances.

Memory Interfaces

The EP7309 is equiped with a ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industry-leading code density.
Pin Mnemonic I/O Pin Description
nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE O ROM expansion OP enable nMWE O ROM expansion write enable
HALFWORD O
WORD O Word access select output WRITE O Transfer direction
Table 2. Static Memory Interface Pin Assignments
Halfword access select output

Digital Audio Capability

The EP7309 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7309

Universal Asynchronous Receiver/Transmitters (UARTs)

The EP7309 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-by te FIFOs for receiving and transmitting data. The UARTs support bit
6 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip
rates up to 115.2 kbps. An IrDA SIR protocol encoder/ decoder can be optionally switched into the RX/TX signals to/from UART 1 to enable these signals to drive an infrared communication interface directly.
Pin Mnemonic I/O Pin Description
TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input
Table 3. Universal Asynchronous Receiver/Transmitters Pin
Assignments

Digital Audio Interface (DAI)

The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal Crystal feature digital bass and treble boost, digital volume control and compressor-limiter functions.
SCLK O Serial bit clock SDOUT O Serial data out SDIN I Serial data in LRCK O Sample clock MCLKIN I Master clock input MCLKOUT O Master clock output
CS43L41/42/43 low-power audio DACs and the
CS53L32 low-power ADC. Some of these devices
Pin Mnemonic I/O Pin Description
Table 4. DAI Interface Pin Assignments
communications systems. The CODEC interface is multiplexed to the same pins as the DAI and SSI2.
Pin Mnemonic I/O Pin Description
PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync
Table 5. CODEC Interface Pin Assignments
Note: See Table 17 on page 10 for information on pin
multiplexes.

SSI2 Interface

An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the DAI and CODEC interfaces through a multiplexer.
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for asymmetric traffic
Pin Mnemonic I/O Pin Description
SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync
Table 6. SSI2 Interface Pin Assignments
Note: See Table 17 on page 10 for information on pin
multiplexes.
Note: See Table 17 on page 10 for information on pin
multiplexes.

CODEC Interface

The EP7309 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 7
EP7309
High-Performance, Low-Power System on Chip

Synchronous Serial Interface

ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation)
Selectable serial clock polarity
Pin Mnemonic I/O Pin Description
ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock
Table 7. Serial Interface Pin Assignments

LCD Controller

A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM.
Interfaces directly to a single-scan panel monochrome STN LCD
Interfaces to a single-scan panel color STN LCD with minimal external glue logic
Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments
Video frame buffer size programmable up to 128 KB
Bits per pixel of 1, 2, or 4 bits
Column outputs can be individually set high with the remaining bits left at high-impedance
Column outputs can be driven all-low, all-high, or all-high­impedance
Keyboard interrupt driven by OR'ing together all Port A bits
Keyboard interrupt can be used to wake up the system
•88 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic
Pin Mnemonic I/O Pin Description
COL[7:0] O
Table 9. Keypad Interface Pin Assignments
Keyboard scanner column drive

Interrupt Controller

When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7309 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources.
Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.)
Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs
Five dedicated off-chip interrupt lines operate as level sensitive interrupts
.
Pin Mnemonic I/O Pin Description
CL1 O LCD line clock CL2 O LCD pixel clock out DD[3:0] O LCD serial display data bus FRM O LCD frame synchronization pulse M O LCD AC bias drive
Table 8. LCD Interface Pin Assignments
Pin Mnemonic I/O Pin Description
nEINT[2:1] I External interrupt EINT[3] I External interrupt nEXTFIQ I External Fast Interrupt input nMEDCHG/nBROM (Note) I Media change interrupt input
Table 10. Interrupt Controller Pin Assignments
Note: Pins are multiplexed. See Table 18 on page 10 for
more information.
64-Keypad Interface
Matrix keyboards and keypads can be easily read by the EP7309. A dedicated 8-bit column driver output generates strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state.
8 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

Real-Time Clock

The EP7309 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt.
Driven byan external 32.768 kHz crystal oscillator
EP7309
High-Performance, Low-Power System on Chip
Pin Mnemonic Pin Description
RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground
Table 11. Real-Time Clock Pin Assignments

PLL and Clocking

Processor and Peripheral Clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz
Pin Mnemonic Pin Description
MOSCIN Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground
Table 12. PLL and Clocking Pin Assignments

DC-to-DC converter interface (PWM)

Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter
Pin Mnemonic I/O Pin Description
DRIVE[1:0] I/O PWM drive output FB[1:0] I PWM feedback input
Table 13. DC-to-DC Converter Interface Pin Assignments

Timers

Internal (RTC) timer
Two internal 16-bit programmable hardware count-down timers
Pin Mnemonic I/O Pin Description
PA[7:0] I/O GPIO port A PB[7:0] I/O GPIO port B PD[0]/LEDFLSH (Note) I/O GPIO port D PD[5:1] I/O GPIO port D PD[7:6]/SDQM[1:0] (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL (Note) I/O GPIO port E
Table 14. General Purpose Input/Output Pin Assignments
Note: Pins are multiplexed. See Table 18 on page 10 for
more information.

Hardware debug Interface

Full JTAG boundary scan and Embedded ICE support
Pin Mnemonic I/O Pin Description
TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select
Table 15. Hardware Debug Interface Pin Assignments
LED Flasher
A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA.
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current

General Purpose Input/Output (GPIO)

Three 8-bit and one 3-bit GPIO ports
Supports scanning keyboard matrix
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 9
Pin Mnemonic I/O Pin Description
PD[0]/LEDFLSH (Note) O LED flasher driver
Table 16. LED Flasher Pin Assignments
Note: Pins are multiplexed. See Table 18 on page 10 for
more information.
EP7309
High-Performance, Low-Power System on Chip

Internal Boot ROM

The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH.

Packaging

The EP7309 is available in a 208-pin LQFP package, 256-ball PBGA package or a 204-ball TFBGA package.

Pin Multiplexing

The following table shows the pin multiplexing of the DAI, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the EP7309 User’s Manual for more information).
Pin
Mnemonic
SSICLK I/O SCLK SSICLK PCMCLK SSITXDA O SDOUT SSITXDA PCMOUT SSIRXDA I SDIN SSIRXDA PCMIN
Table 17. DAI/SSI2/CODEC Pin Multiplexing
I/O DAI SSI2 CODEC
Pin
Mnemonic
SSITXFR I/O LRCK SSITXFR PCMSYNC SSIRXFR I MCLKIN SSIRXFR p/u BUZ O MCLKOUT
Table 17. DAI/SSI2/CODEC Pin Multiplexing
I/O DAI SSI2 CODEC
The following table shows the pins that have been multiplexed in the EP7309.
Signal Block Signal Block
RUN
nMEDCHG
PD[0] GPIO LEDFLSH LED Flasher
PE[1:0] GPIO BOOTSEL[1:0]
PE[2] GPIO CLKSEL
System Configuration
Interrupt Controller
Table 18. Pin Multiplexing
CLKEN
nBROM
System Configuration
Boot ROM select
System Configuration
System Configuration
10 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

System Design

LCD
KEYBOARD
BATTER Y
DC-TO-DC
CONVERTERS
ADC
DIGITIZER
IR LED AND
PHOTODIODE
2RS-232
TRANSCEIVERS
ADDITIONAL I/O
PC CARD
CONTROLLER
PC CARD
SOCKET
nCS[4] PB0 EXPCLK
DD[0-3]
CL1 CL2
FRM
M
D[0-31] A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK nEXTPWR nBATCHG
RUN
WAKEUP
nCS[0] nCS[1]
DRIVE[0-1]
FB[0-1]
EP7309
ADCCLK nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD1/2
TXD1/2
DSR
CTS
DCD
CS[n] WORD
nCS[2] nCS[3]
16
FLASH
16
FLASH
6
FLASH
EXTERNAL MEMORY ­MAPPED EXPANSION
BUFFERS
BUFFERS
AND
LATCHES
16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
DAI
SSICLK
SSITXFR SSITXDA SSIRXDA SSIRXFR
RTCIN
LEDFLSH
CRYSTAL
MOSCIN
EP7309
High-Performance, Low-Power System on Chip
As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7309
completes a low-power system solution. All necessary interface logic is integrated on-chip.
Note: A system can only use one of the following peripheral
DS507F2 Copyright Cirrus Logic, Inc. 2011
Figure 1. A Maximum EP7309 Based System
interfaces at any given time: SSI2,CODEC or DAI.
(All Rights Reserved) 11
EP7309
High-Performance, Low-Power System on Chip

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

DC Core, PLL, and RTC Supply Voltage 2.9 V
DC I/O Supply Voltage (Pad Ring) 3.6 V
DC Pad Input Current 10 mA/pin; 100 mA cumulative
Storage Temperature, No Power –40C to +125C

Recommended Operating Conditions

DC core, PLL, and RTC Supply Voltage 2.5 V 0.2 V
DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V
DC Input / Output Voltage O–I/O supply voltage
Operating Temperature
Extended -20C to +70C; Commercial 0C to +70C; Industrial -40C to +85C

DC Characteristics

All characteristics are specified at V
DDCORE
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”
Symbol Parameter Min Typ Max Unit Conditions
VIH CMOS input high voltage
VIL CMOS input low voltage
VT+
VT-
Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH
VOH
Schmitt trigger positive going threshold
Schmitt trigger negative going threshold
CMOS output high voltage Output drive 1 Output drive 2
a a
a
= 2.5 V , V
0.65 V
DDIO
0.3
V
SS
--2.1V
0.8 - - V
VDD – 0.2
2.5
2.5
= 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C
DDIO
+ 0.3
-
-
-
-
-
V
DDIO
0.25 V
-
-
-
DDIO
V
V
V V V
V
= 2.5 V
DDIO
= 2.5 V
V
DDIO
IOH = 0.1 mA IOH = 4 mA IOH = 12 mA
CMOS output low voltage
VOL
IIN Input leakage current - - 1.0 µA
IOZ
CIN Input capacitance 8 - 10.0 pF
COUT Output capacitance 8 - 10.0 pF
Output drive 1 Output drive 2
Bidirectional 3-state leakage current
a a
b c
a
-
-
-
25 - 100 µA
-
-
-
0.3
0.5
0.5
12 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
V V V
IOL = –0.1 mA IOL = –4 mA IOL = –12 mA
VIN = V
VOUT = V
or GND
DD
DD
or GND
High-Performance, Low-Power System on Chip
Symbol Parameter Min Typ Max Unit Conditions
CI/O Transceiver capacitance 8 - 10.0 pF
EP7309
Only nPOR, nPWRFAIL,
IDD
STANDBY
@ 25 C
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
77 41
-
µA
-
nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL,
IDD
STANDBY
@ 70 C
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
-
-
570 111
µA
nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
IDD
STANDBY
@ 85 C
Standby current consumption Core, Osc, RTC @2.5 V
I/O @ 3.3 V
1
-
-
-
-
1693
163
µA
VIL = GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
= GND ± 0.1 V
IDD
idle
at 74 MHz
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
10
6
-
mA
-
Minimum standby voltage for
VDD
Standby supply voltage 2.0 - - V
STANDBY
state retention, internal SRAM cache, and RTC operation only
a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
± 0.1 V,
DD
± 0.1 V,
DD
± 0.1 V,
DD
± 0.1 V, VIL
DD
Note: 1) Total power consumption = IDD
CORE x
2) A typical design will provide 3.3 V to the I/O supply (i.e., V compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at V
= 3.3 V.
DD
2.5 V + IDD
IO x
3.3 V ), and 2.5 V to the remaining logic. This is to allow the I/O to be
DDIO
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 13
EP7309
Clock
High to Low
High/Low to High
Bus Change
Bus Valid
Undefined/Invalid
V a lid B u s to T ris ta te
Bus/Signal O m ission
Figure 2. Legend for Timing Diagrams
High-Performance, Low-Power System on Chip

Timings

Timing Diagram Conventions

This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at V
= 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40C to +85C. Pin loadings is 50 pF. The timing values are
DDIO
referenced to 1/2 V
14 Copyright Cirrus Logic, Inc. 2011
DD
.
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip

Static Memory

Figure 3 through Figure 6 define the timings associated with all phases of the Static Memory. The following table contains the
values for the timings of each of the Static Memory modes.
Parameter Symbol Min Typ Max Unit
EXPCLK rising edge to nCS assert delay time
EXPCLK falling edge to nCS deassert hold time
EXPCLK rising edge to A assert delay time
EXPCLK falling edge to A deassert hold time
EXPCLK rising edge to nMWE assert delay time
EXPCLK rising edge to nMWE deassert hold time
EXPCLK falling edge to nMOE assert delay time
EXPCLK falling edge to nMOE deassert hold time
EXPCLK falling edge to HALFWORD deassert delay time
EXPCLK falling edge to WORD assert delay time
EXPCLK rising edge to data valid delay time
EXPCLK falling edge to data invalid delay time
Data setup to EXPCLK falling edge time
EXPCLK falling edge to data hold time
t
CSd
t
CSh
t
Ad
t
Ah
t
MWd
t
MWh
t
MOEd
t
MOEh
t
HWd
t
WDd
t
Dv
t
Dnv
t
Ds
t
Dh
2 8 20 ns
2 7 20 ns
4 9 16 ns
31019ns
3 6 10 ns
3 6 10 ns
3 7 10 ns
2 7 10 ns
2 8 20 ns
2 8 16 ns
81321ns
61530ns
--1ns
--3ns
EXPCLK rising edge to WRITE assert delay time
EXPREADY setup to EXPCLK falling edge time
EXPCLK falling edge to EXPREADY hold time
t
WRd
t
EXs
t
EXh
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 15
51123ns
--0ns
--0ns
EP7309
EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
nMOE
t
CSd
t
Ad
t
CSh
t
MOEh
t
Dh
t
Ds
t
HWd
t
WDd
t
WRd
t
MOEd
EXPRDY
t
EXh
t
EXs
Figure 3. Static Memory Single Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Single Read Cycle

Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
16 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

Static Memory Single Write Cycle

EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
t
HWd
t
WDd
t
CSd
t
Ad
t
MWd
t
Dv
t
MWh
t
CSh
nMOE
EXPRDY
t
EXh
t
EXs
Figure 4. Static Memory Single Write Cycle Timing Measurement
EP7309
High-Performance, Low-Power System on Chip
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 17
EP7309
EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
Ah
t
Ah
t
Ah
t
CSh
t
MOEh
t
MOEd
t
EXstEXh
tDst
Dh
t
Ds
t
Ds
t
Ds
t
Dh
t
Dh
t
Dh
t
WRd
t
HWd
t
WDd
Figure 5. Static Memory Burst Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Burst Read Cycle

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
18 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

Static Memory Burst Write Cycle

EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
MWd
t
MWh
t
MWd
t
MWd
t
MWd
t
MWh
t
MWh
t
MWh
t
Ah
t
Ah
t
Ah
t
EXs
t
EXh
t
CSh
t
Dv
t
Dv
t
Dv
t
Dnv
t
Dnv
t
Dnv
t
Dv
t
HWd
t
WDd
Figure 6. Static Memory Burst Write Cycle Timing Measurement
EP7309
High-Performance, Low-Power System on Chip
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 19
EP7309
ADC
CLK
nADC
CSS
ADCIN
ADC
OUT
t
INs
t
INh
t
Cd
t
Od
t
Ovd
Figure 7. SSI1 Interface Timing Measurement
High-Performance, Low-Power System on Chip

SSI1 Interface

Parameter Symbol Min Max Unit
ADCCLK falling edge to nADCCSS deassert delay time
ADCIN data setup to ADCCLK rising edge time
ADCIN data hold from ADCCLK rising edge time
ADCCLK falling edge to data valid delay time
ADCCLK falling edge to data invalid delay time
t
t
t
t
t
Cd
INs
INh
Ovd
Od
910ms
-15ns
-14ns
713ns
23ns
20 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

SSI2 Interface

SSI
CLK
SSIRXFR/
SSITXFR
SSI
TXDA
SSI
RXDA
D1D7
D7
D2
D2 D1
D0
D0
t
clk_per
t
clk_high
t
clk_low
t
FRd
t
FR_per
t
RXs
t
TXd
t
FRa
t
RXh
t
clkrf
t
TXv
Figure 8. SSI2 Interface Timing Measurement
EP7309
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Unit
SSICLK period (slave mode)
SSICLK high time
SSICLK low time
SSICLK rise/fall time
SSICLK rising edge to RX and/or TX frame sync high time
SSICLK rising edge to RX and/or TX frame sync low time
SSIRXFR and/or SSITXFR period
SSIRXDA setup to SSICLK falling edge time
SSIRXDA hold from SSICLK falling edge time
SSICLK rising edge to SSITXDA data valid delay time
SSITXDA valid time
t
clk_per
t
clk_high
t
clk_low
t
clkrf
t
FRd
t
FRa
t
FR_per
t
RXs
t
RXh
t
TXd
t
TXv
185 2050 ns
925 1025 ns
925 1025 ns
318ns
-3ns
-8ns
960 990 ns
37ns
37ns
-2ns
960 990 ns
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 21
EP7309
CL[2]
CL[1]
FRM
M
DD [3 :0 ]
t
CL1d
t
FRMd
t
Md
t
DDd
t
CL2d
Figure 9. LCD Controller Timing Measurement
High-Performance, Low-Power System on Chip

LCD Interface

Parameter Symbol Min Max Unit
CL[2] falling to CL[1] rising delay time
CL[1] falling to CL[2] rising delay time
CL[1] falling to FRM transition time
CL[1] falling to M transition time
CL[2] rising to DD (display data) transition time
t
CL1d
t
CL2d
t
FRMd
t
Md
t
DDd
10 25 ns
80 3,475 ns
300 10,425 ns
10 20 ns
10 20 ns
22 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

JTAG Interface

TDO
TCK
TDI
TMS
t
JPh
t
clk_high
t
clk_low
t
JPzx
t
JPco
t
JPxz
t
clk_per
t
JPs
Figure 10. JTAG Timing Measurement
EP7309
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Units
TCK clock period
TCK clock high time
TCK clock low time
JTAG port setup time
JTAG port hold time
JTAG port clock to output
JTAG port high impedance to valid output
JTAG port valid output to high impedance
t
clk_per
t
clk_high
t
clk_low
t
JPs
t
JPh
t
JPco
t
JPzx
t
JPxz
2-ns
1-ns
1-ns
-0ns
-3ns
-10ns
-12ns
-19ns
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 23
EP7309
Figure 11. 208-Pin LQFP Package Outline Drawing
Pin 1 Indicator
29.60 (1.165)
30.40 (1.197)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
0.50
(0.0197)
BSC
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
1.35 (0.053)
1.45 (0.057)
0 MIN 7 MAX
0.09 (0.004)
0.20 (0.008)
1.40 (0.055)
0.45 (0.018)
0.75 (0.030)
0.05 (0.002)
1.00 (0.039) BSC
Pin 1
Pin 208
1.60 (0.063)
0.15 (0.006)
EP7309
208-Pin LQFP
High-Performance, Low-Power System on Chip

Packages

208-Pin LQFP Package Characteristics

208-Pin LQFP Package Specifications

Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
4) For pin locations, please see Figure 12. For pin descriptions see the EP7309 User’s Manual.
24 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

208-Pin LQFP Pin Diagram

160
159
158
157
53
54
55
56
57
58
59
60
61
62
63
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
106
107
108
109
110
112
113
114
115
116
117
118
119
120
121
64
65
67
68
69
70
71
72
73
74
75
66
98
99
100
101
102
103
104
122
124
125
126
127
128
129
130
105
131
132
133
134
156
155
154
153
152
151
150
149
148
147
146
145
144
143
140
139
138
137
136
141
142
135
161 162 163 164 165 166 167 168 169 170 171 172 173 174
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
201 202 203 204 205 206 207 208
200
175 176 177 178 179
123
111
EP7309
208-Pin LQFP
(Top View)
2345678910111213141516171819202122232425262728293031323334353637383940414243444546474849515052
1
nEXTPWR
BATOK
nPOR
VSSOSC
VDDOSC
MOSCIN
MOSCOUT
nURESET
WAKEUP
A[6] D[6] A[5] D[5]
VDDIO
VSSIO
A[4] D[4] A[3]
D[3]
nPWRFL
A[2] D[2]
A[1] A[0]
D[0]
VDDCORE
VSSIO VDDIO
CL[2] CL[1]
FRM
M DD[2] DD[1]
DD[0]
N/C N/C
N/C
VDDIO
VSSIO
N/C
nMWE
nMOE
nCS[0] nCS[1] nCS[2]
nCS[3]
D[7]
A[7]
D[8]
A[8]
D[9]
D[10]
A[10]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]
D[14]
DD[3]
D[17]
D[15]
A[17]
nTRST
VSSIO
VDDIO
D[18]
A[18
D[19]
A[19]
D[20]
VSSIO
A[21]
D[22]
D[23]
A[23]
D[24]
VSSIO
VDDIO
A[24]
HALFWORD
A[14]
nBATCHG
A[25]
D[25]
D[27] A[27] VSSIO D[28] D[29] D[30] D[31] BUZ COL[0] COL[1] TCLK VDDIO COL[2] COL[3] COL[4] COL[5] COL[6] COL[7] FB[0] VSSIO FB[1]
ADCOUT ADCCLK DRIVE[0]
VDDIO
PD[2]
VSSIO VSSCORE
nADCCS ADCIN
SSIRXDA
SSIRXFR SSITXDA
SSITXFR VSSIO SSICLK PD[0]/LEDFLSH PD[1]
PD[3]
A[22]
PD[4]
VDDIO PD[5]
PD[6]
DRIVE[1]
PD[7]
D[26]
A[15]
D[16]
A[16]
nCS[4]
VDDCORE
A[26]
D[21]
TMS
A[20]
SMPCLK
D[11]
A[9]
D[1]
VSSCORE
N/C
N/C
VSSIO
VSSIO
VSSIO
VSSIO
EXPCLK
WORD
WRITE
RUN/CLKEN
EXPRDY
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]
VSSIO
TDI
VDDIO
TDO
PE[2]/CLKSEL
nEXTFIQ
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[2]
PHDIN
CTS
RXD[2]
DCD
DSR
RTCOUT
RTCIN
VSSIO
PA[7]
VDDIO
VSSIO
nCS[5]
PB[0]
TXD[1]
RXD[1]
nTEST[1]
nTEST[0]
EINT[3]
nEINT[2]
nEINT[1]
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
N/C
VSSRTC
VDDRTC
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
nMEDCHG/nBROM
EP7309
High-Performance, Low-Power System on Chip
Note: 1. N/C should not be grounded but left as no connects.
2. Pin differences between the EP7212 and the EP7309 are bolded.
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 25
EP7309
High-Performance, Low-Power System on Chip

208-Pin LQFP Numeric Pin Listing

Table 19. 208-Pin LQFP Numeric Pin Listing
Pin No.
1nCS[5] O 1 High 2 VDDIO Pad Pwr 3 VSSIO Pad Gnd 4 EXPCLK I/O 1 5 WORD Out 1 Low 6 WRITE Out 1 Low 7 RUN/CLKEN O 1 Low 8 EXPRDY I 1
9 TXD[2] O 1 High 10 RXD[2] I 11 TDI I with p/u* 12 VSSIO Pad Gnd 13 PB[7] I/O 1 Input 14 PB[6] I/O 1 Input 15 PB[5] I/O 1 Input 16 PB[4] I/O 1 Input 17 PB[3] I/O 1 Input 18 PB[2] I/O 1 Input 19 PB[1]/PRDY2 I/O 1 Input 20 PB[0]/PRDY1 I/O 1 Input 21 VDDIO Pad Pwr 22 TDO O 1 Three state 23 PA[7] I/O 1 Input 24 PA[6] I/O 1 Input 25 PA[5] I/O 1 Input 26 PA[4] I/O 1 Input 27 PA[3] I/O 1 Input 28 PA[2] I/O 1 Input 29 PA[1] I/O 1 Input 30 PA[0] I/O 1 Input 31 LEDDRV O 1 Low 32 TXD[1] O 1 High 33 VSSIO Pad Gnd 1 High 34 PHDIN I 35 CTS I 36 RXD[1] I
Signal Type Strength
Reset
State
Table 19. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
37 DCD I 38 DSR I 39 nTEST[1] I With p/u* 40 nTEST[0] I With p/u* 41 EINT[3] I 42 nEINT[2] I 43 nEINT[1] I 44 nEXTFIQ I 45 PE[2]/CLKSEL I/O 1 Input
46
47
48 VSSRTC RTC Gnd 49 RTCOUT O 50 RTCIN I 51 VDDRTC RTC power 52 N/C 53 PD[7] I/O 1 Low 54 PD[6] I/O 1 Low 55 PD[5] I/O 1 Low 56 PD[4] I/O 1 Low 57 VDDIO Pad Pwr 58 TMS I with p/u* 59 PD[3] I/O 1 Low 60 PD[2] I/O 1 Low 61 PD[1] I/O 1 Low 62 PD[0]/LEDFLSH I/O 1 Low 63 SSICLK I/O 1 Input 64 VSSIO Pad Gnd 65 SSITXFR I/O 1 Low 66 SSITXDA O 1 Low 67 SSIRXDA I 68 SSIRXFR I/O Input 69 ADCIN I 70 nADCCS O 1 High 71 VSSCORE Core Gnd 72 VDDCORE Core Pwr
Signal Type Strength
PE[1]/
BOOTSEL[1]
PE[0]/
BOOTSEL[0]
I/O 1 Input
I/O 1 Input
Reset
State
26 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip
Table 19. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
73 VSSIO Pad Gnd 74 VDDIO Pad Pwr
75 DRIVE[1] I/O 2
76 DRIVE[0] I/O 2
77 ADCCLK O 1 Low 78 ADCOUT O 1 Low 79 SMPCLK O 1 Low 80 FB[1] I 81 VSSIO Pad Gnd 82 FB[0] I 83 COL[7] O 1 High 84 COL[6] O 1 High 85 COL[5] O 1 High 86 COL[4] O 1 High 87 COL[3] O 1 High 88 COL[2] O 1 High 89 VDDIO Pad Pwr 90 TCLK I 91 COL[1] O 1 High 92 COL[0] O 1 High 93 BUZ O 1 Low 94 D[31] I/O 1 Low 95 D[30] I/O 1 Low 96 D[29] I/O 1 Low 97 D[28] I/O 1 Low 98 VSSIO Pad Gnd
99 A[27] O 2 Low 100 D[27] I/O 1 Low 101 A[26] O 2 Low 102 D[26] I/O 1 Low 103 A[25] O 2 Low 104 D[25] I/O 1 Low 105 HALFWORD O 1 Low 106 A[24] O 1 Low 107 VDDIO Pad Pwr — 108 VSSIO Pad Gnd — 109 D[24] I/O 1 Low
Signal Type Strength
Reset
State
High /
Low
High /
Low
Table 19. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
110 A[23] O 1 Low 111 D[23] I/O 1 Low 112 A[22] O 1 Low 113 D[22] I/O 1 Low 114 A[21] O 1 Low 115 D[21] I/O 1 Low 116 VSSIO Pad Gnd 117 A[20] O 1 Low 118 D[20] I/O 1 Low
119 A[19] O 1 Low 120 D[19] I/O 1 Low 121 A[18] O 1 Low 122 D[18] I/O 1 Low 123 VDDIO Pad Pwr 124 VSSIO Pad Gnd 125 nTRST I 126 A[17] O 1 Low 127 D[17] I/O 1 Low 128 A[16] O 1 Low 129 D[16] I/O 1 Low 130 A[15] O 1 Low 131 D[15] I/O 1 Low 132 A[14] O 1 Low 133 D[14] I/O 1 Low 134 A[13] O 1 Low 135 D[13] I/O 1 Low 136 A[12] O 1 Low 137 D[12] I/O 1 Low 138 A[11] O 1 Low 139 VDDIO Pad Pwr 140 VSSIO Pad Gnd 141 D[11] I/O 1 Low 142 A[10] O 1 Low 143 D[10] I/O 1 Low 144 A[9] O 1 Low 145 D[9] I/O 1 Low 146 A[8] O 1 Low 147 D[8] I/O 1 Low
Signal Type Strength
Reset
State
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 27
EP7309
High-Performance, Low-Power System on Chip
Table 19. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
148 A[7] O 1 Low 149 VSSIO Pad Gnd 150 D[7] I/O 1 Low 151 nBATCHG I 152 nEXTPWR I 153 BATOK I 154 nPOR I Schmitt
155
156 nURESET I Schmitt 157 VDDOSC Osc Pwr 158 MOSCIN Osc 159 MOSCOUT Osc 160 VSSOSC Osc Gnd 161 WAKEUP I Schmitt 162 nPWRFL I 163 A[6] O 1 Low 164 D[6] I/O 1 Low 165 A[5] Out 1 Low 166 D[5] I/O 1 Low 167 VDDIO Pad Pwr 168 VSSIO Pad Gnd 169 A[4] O 1 Low 170 D[4] I/O 1 Low 171 A[3] O 2 Low 172 D[3] I/O 1 Low 173 A[2] O 2 Low 174 VSSIO Pad Gnd 175 D[2] I/O 1 Low 176 A[1] O 2 Low 177 D[1] I/O 1 Low 178 A[0] O 2 Low 179 D[0] I/O 1 Low 180 VSS CORE Core Gnd 181 VDD CORE Core Pwr 182 VSSIO Pad Gnd 183 VDDIO Pad Pwr 184 CL[2] O 1 Low 185 CL[1] O 1 Low
Signal Type Strength
nMEDCHG/
nBROM
I
Reset
State
Table 19. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
186 FRM O 1 Low 187 M O 1 Low 188 DD[3] I/O 1 Low 189 DD[2] I/O 1 Low 190 VSSIO Pad Gnd 191 DD[1] I/O 1 Low 192 DD[0] I/O 1 Low 193 N/C O 1 High 194 N/C O 1 High 195 N/C I/O 2 Low 196 N/C I/O 2 Low 197 VDDIO Pad Pwr 198 VSSIO Pad Gnd 199 N/C I/O 2 Low 200 N/C I/O 2 Low 201 nMWE O 1 High 202 nMOE O 1 High 203 VSSIO Pad Gnd 204 nCS[0] O 1 High 205 nCS[1] O 1 High 206 nCS[2] O 1 High 207 nCS[3] O 1 High 208 nCS[4] O 1 High
Signal Type Strength
*With p/u’ means with internal pull-up on the pin.
Reset
State
28 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2

256-Ball PBGA Package Characteristics

TOP VI EW
17.00 (0.669)
15.00
(0.590)
SIDE VIEW
BOTTOM VIEW
A
B C D
E
F G H
J
K
L M N
P R
T
1.00 (0.040)
Pin 1 Indicator
Pin 1 Corner
Pin 1 Corner
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
15.00
(0.590)
2 Layer
17.00 (0.669)
17.00 (0.669)
1.00 (0.040)
1.00 (0.040)
1.00 (0.040)
30° TYP
REF
REF
0.50
3 Places
0.85 (0.034) ±0.05 (.002)
0.40 (0.016) ±0.05 (.002)
0.36 (0.014)
17.00 (0.669)
R
D1
E1
D
E
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.09 (0.004)
JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body

256-Ball PBGA Package Specifications

EP7309
High-Performance, Low-Power System on Chip
Note: 1) For pin locations see Table 20.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7309 design, contact Cirrus Logic for the latest package information.
Figure 13. 256-Ball PBGA Package
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 29
EP7309
High-Performance, Low-Power System on Chip

256-Ball PBGA Pinout (Top View))

1 2 3 4 5 6 7 8 9 10 11 12 13 141516
A VDDIO nCS[4] nCS[1] N/C N/C DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] MOSCOUT VDDOSC VSSIO A
B nCS[5] VDDIO nCS[3] nMOE VDDIO N/C DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B
C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C
D WRITE EXPRDY VSSIO VDDIO nCS[2] nMWE N/C CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D
E RXD[2] PB[7] TDI WORD VSSIO nCS[0] N/C FRM A[0] D[5] VSSOSC VSSIO
F PB[5] PB[3] VSSIO TXD[2]
G PB[1] VDDIO TDO PB[4] PB[6] VSSRTC VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G
H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12] A[13] VSSIO D[14] D[15] H
J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC A[17] A[16] A[15] A[14] nTRST D[16] D[17] J
K LEDDRV PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K
L RXD[1] DSR VDDIO nEINT[1]
M nTEST[0] nEINT[2] VDDIO
N nEXTFIQ
P VSSRTC RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P
R RTCIN VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30] A[27] A[25] VDDIO A[24] R
T VDDRTC PD[7] PD[6] PD[3] SSICLK SSIRXFR VDDCORE DRIVE[0] FB[1] COL[5] VDDIO BUZ D[28] A[26] D[25] VSSIO T
PE[1]/
BOOTSEL[1]
VSSIO VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N
PE[0]/
BOOTSEL[0]
RUN/
CLKEN
PE[2]/
CLKSEL
VSSIO N/C DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F
VSSRTC
TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO A[23] VDDIO A[20] D[21] M
PD[0]/
LEDFLSH
VSSRTC COL[6] D[31] VSSRTC A[22] A[21] VSSIO A[18] A[19] L
nMEDCHG/
nBROM
VDDIO D[9] D[10] E

256-Ball PBGA Ball Listing

The list is ordered by ball location.
Table 20. 256-Ball PBGA Ball Listing
Ball Location Name Type Description
A1 VDDIO Pad power Digital I/O power, 3.3V A2 nCS[4] O Chip select out A3 nCS[1] O Chip select out A4 N/C O A5 N/C O A6 DD[1] O LCD serial display data A7 M O LCD AC bias drive A8 VDDIO Pad power Digital I/O power, 3.3V
A9 D[0] I/O Data I/O A10 D[2] I/O Data I/O A11 A[3] O System byte address
Ball Location Name Type Description
30 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
Table 20. 256-Ball PBGA Ball Listing (Continued)
A12 VDDIO Pad power Digital I/O power, 3.3V A13 A[6] O System byte address A14 MOSCOUT O Main oscillator out
A15 VDDOSC
A16 VSSIO Pad ground I/O ground
B1 nCS[5] O Chip select out B2 VDDIO Pad power I/O ground B3 nCS[3] O Chip select out B4 nMOE O ROM, expansion OP enable B5 VDDIO Pad power Di gital I/O power, 3.3V B6 N/C O
Oscillator
power
Oscillator power in, 2.5V
EP7309
High-Performance, Low-Power System on Chip
Table 20. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
B7 DD[2] O LCD serial display data B8 CL[1] O LCD line clock B9 VDDCORE Core power Digital core power, 2.5V
B10 D[1] I/O Data I/O
B11 A[2] O System byte address B12 A[4] O System byte address B13 A[5] O System byte address B14 WAKEUP I System wake up input B15 VDDIO Pad power Digital I/O power, 3.3V B16 nURESET I User reset input
C1 VDDIO Pad power Digital I/O power, 3.3V C2 EXPCLK I Expansion clock input C3 VSSIO Pad ground I/O ground C4 VDDIO Pad power Digital I/O power, 3.3V C5 VSSIO Pad ground I/O ground C6 VSSIO Pad ground I/O ground C7 VSSIO Pad ground I/O ground C8 VDDIO Pad power Digital I/O power, 3.3V
C9 VSSIO Pad ground I/O ground C10 VSSIO Pad ground I/O ground C11 VSSIO Pad ground I/O ground C12 VDDIO Pad power Digital I/O power, 3.3V C13 VSSIO Pad ground I/O ground C14 VSSIO Pad ground I/O ground C15 nPOR I Power-on reset input C16 nEXTPWR I External power supply sense input
D1 WRITE O Transfer direction
D2 EXPRDY I Expansion port ready input
D3 VSSIO Pad ground I/O ground
D4 VDDIO Pad power Digital I/O power, 3.3V
D5 nCS[2] O Chip select out
D6 nMWE O ROM, expansion write enable
D7 N/C O
D8 CL[2] O LCD pixel clock out
D9 VSSRTC Core ground Real time clock ground D10 D[4] I/O Data I/O D11 nPWRFL I Power fail sense input D12 MOSCIN I Main oscillator input D13 VDDIO Pad power Digital I/O power, 3.3V D14 VSSIO Pad ground I/O ground D15 D[7] I/O Data I/O D16 D[8] I/O Data I/O
E1 RXD[2] I UART 2 receive data input
E2 PB[7] I GPIO port B
E3 TDI I JTAG data input
E4 WORD O Word access select output
E5 VSSIO Pad ground I/O ground
E6 nCS[0] O Chip select out
Table 20. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
E7 N/C O E8 FRM O LCD frame synchronization pulse E9 A[0] O System byte address
E10 D[5] I/O Data I/O
E11 VSSOSC
E12 VSSIO Pad ground I/O ground
E13 nMEDCHG/nBROM I
E14 VDDIO Pad power Digital I/O power, 3.3V E15 D[9] I/O Data I/O E16 D[10] I/O Data I/O
F1 PB[5] I GPIO port B F2 PB[3] I GPIO port B F3 VSSIO Pad ground I/O ground F4 TXD[2] O UART 2 transmit data output F5 RUN/CLKEN O Run output / clock enable output F6 VSSIO Pad ground I/O ground F7 N/C O F8 DD[3] O LCD serial display data F9 A[1] O System byte address
F10 D[6] I/O Data I/O
F11 VSSRTC RTC ground Real time clock ground F12 BATOK I Battery ok input F13 nBATCHG I Battery changed sense input F14 VSSIO Pad ground I/O ground F15 D[11] I/O Data I/O F16 VDDIO Pad power Digital I/O power, 3.3V
G1 PB[1]/PRDY[2] I
G2 VDDIO Pad power Digital I/O power, 3.3V G3 TDO O JTAG data out G4 PB[4] I GPIO port B G5 PB[6] I GPIO port B G6 VSSRTC Core ground Real time clock ground G7 VSSRTC RTC ground Real time clock ground G8 DD[0] O LCD serial display data
G9 D[3] I/O Data I/O G10 VSSRTC RTC ground Real time clock ground G11 A[7] O System byte address G12 A[8] O System byte address G13 A[9] O System byte address G14 VSSIO Pad ground I/O ground G15 D[12] I/O Data I/O G16 D[13] I/O Data I/O
H1 PA[7] I GPIO port A
H2 PA[5] I GPIO port A
H3 VSSIO Pad ground I/O ground
H4 PA[4] I GPIO port A
H5 PA[6] I GPIO port A
Oscillator
ground
PLL ground
Media change interrupt input / internal rom boot enable
GPIO port B / CL-PS6700 interface signal
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 31
EP7309
High-Performance, Low-Power System on Chip
Table 20. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
H6 PB[0]/PRDY[1] I
H7 PB[2] I GPIO port B H8 VSSRTC RTC ground Real time clock ground
H9 VSSRTC RTC ground Real time clock ground H10 A[1 0] O System byte address H11 A[11] O System byte address H12 A[1 2] O System byte address H13 A[13] O System byte address H14 VSSIO Pad ground I/O ground H15 D[14] I/O Data I/O H16 D[15] I/O Data I/O
J1 PA[3] I GPIO port A J2 PA[1] I GPIO port A J3 VSSIO Pad ground I/O ground J4 PA[2] I GPIO port A J5 PA[0] I GPIO port A J6 TXD[1] O UART 1 transmit data out J7 CTS I UART 1 clear to send input J8 VSSRTC RTC ground Real time clock ground
J9 VSSRTC RTC ground Real time clock ground J10 A[17] O System byte address J11 A[16] O System byte address J12 A[15] O System byte address J13 A[14] O System byte address J14 nTRST I JTAG async reset input J15 D[16] I/O Data I/O J16 D[17] I/O Data I/O
K1 LEDDRV O IR LED drivet K2 PHDIN I Photodiode input K3 VSSIO Pad ground I/O ground K4 DCD I UART 1 data carrier detect K5 nTEST[1] I Test mode select input K6 EINT[3] I External interrupt K7 VSSRTC RTC ground Real time clock ground K8 ADCIN I SSI1 ADC serial input
K9 COL[4] O Keyboard scanner column drive K10 TCLK I JTAG clock K11 D[20] I/O Data I/O K12 D[19] I/O Data I/O K13 D[18] I/O Data I/O K14 VSSIO Pad ground I/O ground K15 VDDIO Pad power Digital I/O power, 3.3V K16 VDDIO Pad power Digital I/O power, 3.3V
L1 RXD[1] I UART 1 receive data input L2 DSR I UART 1 data set ready input L3 VDDIO Pad power Digital I/O power, 3.3V L4 nEINT[1] I External interrupt input L5 PE[2]/CLKSEL I GPIO port E / clock input mode select
GPIO port B / CL-PS6700 interface signal
Table 20. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
L6 VSSRTC RTC ground Real time clock ground L7 PD[0]/LEDFLSH I/O GPIO port D / LED blinker output L8 VSSRTC Core ground Real time clock ground
L9 COL[6] O Keyboard scanner column drive L10 D[31] I/O Data I/O L11 VSSRTC RTC ground Real time clock ground L12 A[22] O System byte address L13 A[21] O System byte address L14 VSSIO Pad ground I/O ground L15 A[18] O System byte address L16 A[19] O System byte address M1 nTEST[0] I Test mode select input M2 nEINT[2] I External interrupt input M3 VDDIO Pad power Digital I/O power, 3.3V M4 PE[0]/BOOTSEL[0] I GPIO port E / Boot mode select M5 TMS I JTAG mode select M6 VDDIO Pad power Digital I/O power, 3.3V M7 SSITXFR I/O DAI/CODEC/SSI2 frame sync M8 DRIVE[1] I/O PWM drive output M9 FB[0] I PWM feedback input
M10 COL[0] O Keyboard scanner column drive M11 D[27] I/O Data I/O M12 VSSIO Pad ground I/O ground M13 A[23] O System byte address M14 VDDIO Pad power Digital I/O power, 3.3V M15 A[20] O System byte address M16 D[21] I/O Data I/O
N1 nEXTFIQ I External fast interrupt input
N2 PE[1]/BOOTSEL[1] I GPIO port E / boot mode select
N3 VSSIO Pad ground I/O ground
N4 VDDIO P ad power Digital I/O power, 3.3V
N5 PD[5] I/O GPIO port D
N6 PD[2] I/O GPIO port D
N7 SSIRXDA I/O DAI/CODEC/SSI2 serial data input
N8 ADCCLK O SSI1 ADC serial clock
N9 SMPCLK O SSI1 ADC sample clock
N10 COL[2] O Keyboard scanner column drive N11 D[29] I/O Data I/O N12 D[26] I/O Data I/O N13 HALFWORD O Halfword access select output N14 VSSIO Pad ground I/O ground N15 D[22] I/O Data I/O N16 D[23] I/O Data I/O
P1 VSSRTC RTC ground Real time clock ground
P2 RTCOUT O Real time clock oscillator output
P3 VSSIO Pad ground I/O ground
P4 VSSIO Pad ground I/O ground
P5 VDDIO Pad power Digital I/O power, 3.3V
32 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
Table 20. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
P6 VSSIO Pad ground I/O ground P7 VSSIO Pad ground I/O ground P8 VDDIO Pad power Digital I/O power, 3.3V P9 VSSIO Pad ground I/O ground
P10 VDDIO Pad power Digital I/O power, 3.3V
P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power Digital I/O power P14 VSSIO Pad ground I/O ground P15 D[24] I/O Data I/O P16 VDDIO Pad power Digital I/O power, 3.3V
R1 RTCIN I/O Real time clock oscillator input R2 VDDIO Pad power Digital I/O power, 3.3V R3 PD[4] I/O GPIO port D R4 PD[1] I/O GPIO port D R5 SSITXDA O DAI/CODEC/SSI2 serial data output R6 nADCCS O SSI1 ADC chip select R7 VDDIO Pad power Digital I/O power, 3.3V R8 ADC OUT O S SI1 ADC serial data output
R9 COL[7] O Keyboard scanner column drive R10 COL[3] O Keyboard scanner column drive R11 COL[1] O Keyboard scanner column drive R12 D[30] I/O Data I/O R13 A[27] O System byte address R14 A[25] O System byte address R15 VDDIO Pad power Digital I/O power, 3.3V R16 A[24] O System byte address
T1 VDDRTC RTC power Real time clock power, 2.5V T2 PD[7] I/O GPIO port D T3 PD[6] I/O GPIO port D T4 PD[3] I/O GPIO port D T5 SSICLK I/O DAI/CODEC/SSI2 serial clock T6 SSIRXFR DAI/CODEC/SSI2 frame sync T7 VDDCORE Core power Core power, 2.5V T8 DRIVE[0] I/O PWM drive output
T9 FB[1] I PWM feedback input T10 COL[5] O Keyboard scanner column drive T11 VDDIO Pad power Digital I/O power, 3.3V T12 BUZ O Buzzer drive output T13 D[28] I/O Data I/O T14 A[26] O S ystem byte address T15 D[25] I/O Data I/O T16 VSSIO Pad ground I/O ground
EP7309
High-Performance, Low-Power System on Chip
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 33
EP7309
High-Performance, Low-Power System on Chip

JTAG Boundary Scan Signal Ordering

Table 21. JTAG Boundary Scan Signal Ordering
LQFP
Pin No.
1B1 nCS[5] O 1 4 C2 EXPCLK I/O 3 5E4 WORD O 6 6D1 WRITE O 8 7 F5 RUN/CLKEN O 10 8 D2 EXPRDY I 13
9F4 TXD2 O14 10 E1 RXD2 I 16 13 E2 PB[7] I/O 17 14 G5 PB[6] I/O 20 15 F1 PB[5] I/O 23 16 G4 PB[4] I/O 26 17 F2 PB[3] I/O 29 18 H7 PB[2] I/O 32 19 G1 PB[1]/PRDY2 I/O 35 20 H6 PB[0]/PRDY1 I/O 38 23 H1 PA[7] I/O 41 24 H5 PA[6] I/O 44 25 H2 PA[5] I/O 47 26 H4 PA[4] I/O 50 27 J1 PA[3] I/O 53 28 J4 PA[2] I/O 56 29 J2 PA[1] I/O 59 30 J5 PA[0] I/O 62 31 K1 LEDDRV O 65 32 J6 TXD1 O 67 34 K2 PHDIN I 69 35 J7 CTS I 70 36 L1 RXD1 I 71 37 K4 DCD I 72 38 L2 DSR I 73 39 K5 nTEST1 I 74 40 M1 nTEST0 I 75 41 K6 EINT3 I 76 42 M2 nEINT2 I 77 43 L4 nEINT1 I 78
PBGA
Ball
Signal Type Position
34 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
High-Performance, Low-Power System on Chip
Table 21. JTAG Boundary Scan Signal Ordering (Continued)
EP7309
LQFP
Pin No.
44 N1 nEXTFIQ I 79 45 L5 PE[2]/CLKSEL I/O 80 46 N2 PE[1]/BOOTSEL1 I/O 83 47 M4 PE[0]/BOOTSEL0 I/O 86 53 T2 PD[7] I/O 89 54 T3 PD[6] I/O 92 55 N5 PD[5] I/O 95 56 R3 PD[4] I/O 98 59 T4 PD[3] I/O 101 60 N6 PD[2] I/O 104 61 R4 PD[1] I/O 107 62 L7 PD[0]/LEDFLSH O 110 68 T6 SSIRXFR I/O 122 69 K8 ADCIN I 125 70 R6 nADCCS O 126 75 M8 DRIVE1 I/O 128 76 T8 DRIVE0 I/O 131 77 N8 ADCCLK O 134 78 R8 ADCOUT O 136 79 N9 SMPCLK O 138 80 T9 FB1 I 140 82 M9 FB0 I 141 83 R9 COL7 O 142 84 L9 COL6 O 144 85 T10 COL5 O 146 86 K9 COL4 O 148 87 R10 COL3 O 150 88 N10 COL2 O 152 91 R11 COL1 O 154 92 M10 COL0 O 156 93 T12 BUZ O 158 94 L10 D[31] I/O 160 95 R12 D[30] I/O 163 96 N11 D[29] I/O 166 97 T13 D[28] I/O 169
99 R13 A[27] Out 172 100 M11 D[27] I/O 174 101 T14 A[26] O 177
PBGA
Ball
Signal Type Position
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 35
EP7309
High-Performance, Low-Power System on Chip
Table 21. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
102 N12 D[26] I/O 179 103 R14 A[25] O 182 104 T15 D[25] I/O 184 105 N13 HALFWORD O 187 106 R16 A[24] O 189 109 P15 D[24] I/O 191 110 M13 A[23] O 194 111 N16 D[23] I/O 196 112 L12 A[22] O 199 113 N15 D[22] I/O 201 114 L13 A[21] O 204 115 M16 D[21] I/O 206 117 M15 A[20] O 209 118 K11 D[20] I/O 211 119 L16 A[19] O 214 120 K12 D[19] I/O 216 121 L15 A[18] O 219 122 K13 D[18] I/O 221 126 J10 A[17] O 224 127 J16 D[17] I/O 226 128 J11 A[16] O 229 129 J15 D[16] I/O 231 130 J12 A[15] O 234 131 H16 D[15] I/O 236 132 J13 A[14] O 239 133 H15 D[14] I/O 241 134 H13 A[13] O 244 135 G16 D[13] I/O 246 136 H12 A[12] O 249 137 G15 D[12] I/O 251 138 H11 A[11] O 254 141 F15 D[11] I/O 256 142 H10 A[10] O 259 143 E16 D[10] I/O 261 144 G13 A[9] O 264 145 E15 D[9] I/O 266 146 G12 A[8] O 269 147 D16 D[8] I/O 271
PBGA
Ball
Signal Type Position
36 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
High-Performance, Low-Power System on Chip
Table 21. JTAG Boundary Scan Signal Ordering (Continued)
EP7309
LQFP
Pin No.
148 G11 A[7] O 274 150 D15 D[7] I/O 276 151 F13 nBATCHG I 279 152 C16 nEXTPWR I 280 153 F12 BATOK I 281 154 C15 nPOR I 282 155 E13 nMEDCHG/nBROM I 283 156 B16 nURESET I 284 161 B14 WAKEUP I 285 162 D11 nPWRFL I 286 163 A13 A[6] O 287 164 F10 D[6] I/O 289 165 B13 A[5] O 292 166 E10 D[5] I/O 294 169 B12 A[4] O 297 170 D10 D[4] I/O 299 171 A11 A[3] O 302 172 G9 D[3] I/O 304 173 B11 A[2] O 307 175 A10 D[2] I/O 309 176 F9 A[1] O 312 177 B10 D[1] I/O 314 178 E9 A[0] O 317 179 A9 D[0] I/O 319 184 D8 CL2 O 322 185 B8 CL1 O 324 186 E8 FRM O 326 187 A7 M O 328 188 F8 DD[3] I/O 330 189 B7 DD[2] I/O 333 191 A6 DD[1] I/O 336 192 G8 DD[0] I/O 339 193 B6 N/C O 342 194 D7 N/C O 344 195 A5 N/C I/O 346 196 E7 N/C I/O 349 199 F7 N/C I/O 352 200 A4 N/C I/O 355
PBGA
Ball
Signal Type Position
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 37
EP7309
High-Performance, Low-Power System on Chip
Table 21. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
201 D6 nMWE O 358 202 B4 nMOE O 360 204 E6 nCS[0] O 362 205 A3 nCS[1] O 364 206 D5 nCS[2] O 366 207 B3 nCS[3] O 368 208 A2 nCS[4] O 370
1) See EP7309 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.
PBGA
Ball
Signal Type Position
38 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
EP7309
High-Performance, Low-Power System on Chip

CONVENTIONS

This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet.

Acronyms and Abbreviations

Table 22 lists abbreviations and acronyms used in this data sheet.
Table 22. Acronyms and Abbreviations
Acronym/
Abbreviation
A/D analog-to-digital ADC analog-to-digital converter CODEC coder / decoder D/A digital-to-analog DMA direct-memory access EPB embedded peripheral bus FCS frame check sequence FIFO first in / first out FIQ fast interrupt request GPIO general purpose I/O ICT in circuit test IR infrared IRQ standard interrupt request IrDA Infrared Data Association JTAG Joint Test Action Group LCD liquid crystal display LED light-emitting diode LQFP low profile quad flat pack LSB least significant bit MIPS millions of instructions per second MMU memory management unit MSB most significant bit PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface
Definition
Table 22. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver
Definition

Units of Measurement

Table 23. Unit of Measurement
Symbol Unit of Measure
C
fs sample frequency Hz hertz (cycle per second) kbps kilobits per second KB kilobyte (1,024 bytes) kHz kilohertz k kilohm Mbps megabits (1,048,576 bits) per second MB megabyte (1,048,576 bytes) MBps megabytes per second MHz megahertz (1,000 kilohertz)
A microampereFmicrofaradWmicrowatts microsecond (1,000 nanoseconds)
mA milliampere mW milliwatt ms millisecond (1,000 microseconds) ns nanosecond Vvolt Wwatt
degree Celsius
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 39
EP7309
High-Performance, Low-Power System on Chip

General Conventions

Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal.
Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7309 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.”

Pin Description Conventions

Abbreviations used for signal directions are listed in Table 24.
Table 24. Pin Description Conventions
Abbreviation Direction
I Input O Output I/O Input or Output
40 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
High-Performance, Low-Power System on Chip

Ordering Information

Model T emperature Package
EP7309-CBZ 0 to +70 °C EP7309-IBZ -40 to +85 °C EP7309-CVZ 0 to +70 °C EP7309-IVZ -40 to +85 °C

Environmental, Manufacturing, & Handling Information

Model Number Peak Reflow Temp MSL Rating* Max Floor Life
EP7309-CBZ EP7309-IBZ
260 °C 3 7 Days
EP7309-CVZ EP7309-IVZ
EP7309
256-pin PBGA, 17mm X 17mm
208-pin LQFP.
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020. All devices are now lead (Pb) free.
DS507F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 41
EP7309
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE Cirrus Logic, Inc. and it s su bsi d iari e s (“Ci r ru s”) be li eve t hat the inf or mati o n con tai n ed in th i s docu ment i s acc urate and reliable. Ho we ver , t h e inf o rmat io n i s su bj e ct
to change without noti ce and is provi ded “AS I S” with out warran ty of any kind ( express or implied ). Cust omers are a dvised to obtain the latest version of relevant information to verify, before placing orders, tha t inform atio n bei ng relied on is curr ent and com plete. Al l prod ucts are sold s ubject to the ter ms and co nditio ns of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other righ ts of thir d parties. This document is the property of Ci rrus and by furnishing this information, Cirrus gr an ts no li cense, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for ge neral distribution, advertising or promotional purpose s, or for crea ting any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM­ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DI RECTORS, EMPL OYEES, DI STRIBUTO RS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT­TORNEYS' FEES AND COSTS, THAT MAY RESU LT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
SPI is a trademark of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. LINUX is a registered trademark of Linus Torvalds. Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.
High-Performance, Low-Power System on Chip

Revision History

Revision Date Changes
PP1 NOV 2003 First preliminary release.
F1 AUG 2005 Updated ordering information. Added MSL data. F2 MAR 2011 Removed lead-containing device ordering information. Removed 204-pin BGA
option.
42 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS507F2
Loading...