Cirrus Logic CS5480 User Manual

CS5480
VDDA
GNDA
TX / SDO
RX / SDI
UART/SPI
Serial
Interfac e
Energy
To
Pulse
Conversion
RESET
Calculation
4th Order 
Modulator
Digital
Filter
HPF
Optio n
DO1
DO2
Digital
Filter
4th Order 
Modulator
HPF
Optio n
Temperature
Sensor
VREF+
Voltage
Reference
VDDD
VREF-
System
Clock
IIN2 +
IIN2 -
PGA
IIN1+
IIN1-
PGA
10x
CS5480
GNDD
CS
SCLK
SSEL
DO3
VIN+
VIN-
Clock
Generator
XIN XOUT
MODE
Digital
Filter
HPF
Optio n
4th Order 
Modulator
Three Channel Energy Measurement IC

Features

Superior Analog Performance with Ultra-low Noise Level & High SNR
Energy Measurement Accuracy of 0.1% over 4000:1 Dynamic Range
Current RMS Measurement Accuracy of 0.1% over 1000:1 Dynamic Range
3 Independent 24-bit, 4 for Voltage and Current Measurements
3 Configurable Digital Outputs for Energy Pulses, Zero-crossing, or Energy Direction
Supports Shunt Resistor, CT, & Rogowski Coil Current Sensors
On-chip Measurements & Calculations:
- Active, Reactive, and Apparent Power
- RMS Voltage and Current
- Power Factor and Line Frequency
- Instantaneous Voltage, Current, and Power
Overcurrent, Voltage Sag, and Voltage Swell Detection
Ultra-fast On-chip Digital Calibration
Internal Register Protection via Checksum and Write Protection
UART/SPI™ Serial Interface
On-chip Temperature Sensor
On-chip Voltage Reference (25ppm / °C Typ.)
Single 3.3V Power Supply
Ultra-fine Phase Compensation
Low Power Consumption: <13mW
Power Supply Configurations GNDA = GNDD = 0V, VDDA = +3.3V
4mm x 4mm, 24-pin QFN Package
ORDERING INFORMATION
See Page 69.
th
-order, Delta-Sigma Modulators
Description
The CS5480 is a high-accuracy, three-channel, energy mea­surement analog front end.
The CS5480 incorporates independent, 4th order, Delta-Sigma analog-to-digital converters for every channel, reference cir­cuitry, and the proven EXL signal processing core to provide active, reactive, and apparent energy measurement. In addi­tion, RMS and power factor calculations are available. Calculations are output via configurable energy pulse, or direct UART/SPI™ serial access to on-chip registers.
Instantaneous current, voltage, and power measurements are also available over the serial port. Multiple serial options are offered to allow customer flexibility. The SPI provides higher speed, and the 2-wire UART minimizes the cost of isolation where required.
Three configurable digital outputs provide energy pulses, zero­crossing, energy direction, and interrupt functions. Interrupts can be generated for a variety of conditions including voltage sag or swell, overcurrent, and more. On-chip register integrity is assured via checksum and write protection. The CS5480 is designed to interface to a variety of voltage and current sen­sors including shunt resistors, current transformers, and Rogowski coils.
On-chip functionality makes digital calibration simple and ul­tra-fast, minimizing the time required at the end of the customer production line. Performance across temperature is ensured with an on-chip voltage reference with very low drift. A single 3.3V power supply is required, and power consump­tion is very low at <13mW. To minimize space requirements, the CS5480 is offered in a low-cost, 4mm x 4mm 24-pin QFN package.
Cirrus Logic, Inc.
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2013
(All Rights Reserved)
MAR’13
DS980F3
CS5480
TABLE OF CONTENTS
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.1 Analog Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1.1 Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Current1 and Current2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1.3 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2.1 Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2.2 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2.3 UART/SPI™ Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2.3.2 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2.4 MODE Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3. Characteristics and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4. Signal Flow Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.1 Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.2 Decimation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.3 IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.4 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.5 DC Offset and Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.6 High-pass and Phase Matching Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.7 Digital Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.8 Low-rate Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.8.1 Fixed Number of Samples Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.2 Line-cycle Synchronized Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.3 RMS Current and Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.4 Active Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.8.5 Reactive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.8.6 Apparent Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.7 Peak Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.8.8 Power Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Average Active Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.10 Average Reactive Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2 Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.3 Zero-crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.4 Line Frequency Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5.5 Meter Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
5.6 Tamper Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
5.6.1 Anti-tampering on Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6.1.1 Automatic Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
5.6.1.2 Manual Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
5.6.2 Anti-tampering on Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
5.7 Energy Pulse Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2 DS980F3
CS5480
5.7.1 Pulse Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7.2 Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.8 Voltage Sag, Voltage Swell, and Overcurrent Detection . . . . . . . . . . . . . . . . . . . . .26
5.9 Phase Sequence Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.10 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
5.11 Anti-Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
5.12 Register Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.12.1 Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.12.2 Register Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. Host Commands and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1 Memory Access Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1.1 Page Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1.2 Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1.3 Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.3 Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.4 Serial Time Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Hardware Registers Summary (Page 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Software Registers Summary (Page 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Software Registers Summary (Page 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Software Registers Summary (Page 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 Calibration in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.1 Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.1.1 DC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.1.2 Current Channel AC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.2 Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1.3 Calibration Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Temperature Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.3.1 Temperature Offset and Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
11. Environmental, Manufacturing, and Handling Information . . . . . . . . . . . . . . . . . . . . . 69
12. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DS980F3 3
CS5480
LIST OF FIGURES
Figure 1. Oscillator Connections................................................................................................... 7
Figure 2. Multi-device UART Connections.................................................................................... 8
Figure 3. UART Serial Frame Format........................................................................................... 8
Figure 4. Active Energy Load Performance.................................................................................. 9
Figure 5. Reactive Energy Load Performance............................................................................ 10
Figure 6. IRMS Load Performance ............................................................................................. 10
Figure 7. SPI Data and Clock Timing ......................................................................................... 15
Figure 8. Multi-device UART Timing........................................................................................... 15
Figure 9. Signal Flow for V1, I1, P1, Q1 Measurements ............................................................ 17
Figure 10. Signal Flow for V2, I2, P2, and Q2 Measurements ................................................... 17
Figure 11. Low-rate Calculations ................................................................................................18
Figure 12. Power-on Reset Timing ............................................................................................. 21
Figure 13. Zero-crossing Level and Zero-crossing Output on DOx ............................................ 22
Figure 14. Channel Selection and Tamper Protection Flow ....................................................... 23
Figure 15. Automatic Channel Selection .................................................................................... 24
Figure 16. Energy Pulse Generation and Digital Output Control ................................................ 25
Figure 17. Sag, Swell, and Overcurrent Detect .......................................................................... 26
Figure 18. Phase Sequence A, B, C for Rising Edge Transition ................................................ 27
Figure 19. Phase Sequence C, B, A for Rising Edge Transition ................................................ 28
Figure 20. Byte Sequence for Page Select................................................................................. 29
Figure 21. Byte Sequence for Register Read ............................................................................. 29
Figure 22. Byte Sequence for Register Write ............................................................................. 29
Figure 23. Byte Sequence for Instructions.................................................................................. 29
Figure 24. Byte Sequence for Checksum ................................................................................... 30
Figure 25. Calibration Data Flow ................................................................................................63
Figure 26. T Register vs. Force Temp ........................................................................................ 65
Figure 27. Typical Single-phase 3-Wire Connection .................................................................. 66
Figure 28. Typical Single-phase 2-Wire Connection .................................................................. 67
LIST OF TABLES
Table 1. POR Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 2. Meter Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 3. Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 4. Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 DS980F3
CS5480

1. OVERVIEW

The CS5480 is a CMOS power measurement integrated circuit that uses three  analog-to-digital converters to measure line voltage, two currents and temperature. It calculates active, reactive, and apparent power as well as RMS voltage and current and peak voltage and current. It handles other system-related functions, such as energy pulse generation, voltage sag and swell, overcurrent and zero-crossing detection, and line frequency measurement.
The CS5480 is optimized to interface to current transformers, shunt resistors, or Rogowski coils for current measurement and to resistive dividers or voltage transformers for voltage measurement. Two full-scale ranges are provided on the current inputs to accommodate different types of current sensors. The CS5480’s three differential inputs have a common-mode input range from analog ground (GNDA) to the positive analog supply (VDDA).
An on-chip voltage reference (nominally 2.4 volts) is generated and provided at analog output, VREF±.
Three digital outputs (DO1, DO2, and DO3) provide a variety of output signals, and depending on the mode selected, energy pulses, zero-crossings, or other choices.
The CS5480 includes a UART/SPI™ serial host interface to an external microcontroller. The serial select (SSEL) pin is used to configure the serial port to be a SPI or UART. SPI signals include serial data input (SDI), serial data output (SDO), and serial clock (SCLK). UART signals include serial data input (RX) and serial data output (TX). A chip select (CS interface with the microcontroller.
) signal allows multiple CS5480s to share the same serial
DS980F3 5

2. PIN DESCRIPTION

87
6
5
4
3
2
1
9
10
11 12
19
2021222324
13
14
15
16
17
18
Top-Down (Through Package) View
24-Pin QFN Package
XOUT
VDDD
GNDD
MODE
SSEL
CS
IIN2-
IIN2+
VREF-
VREF+
GNDA
XIN
RESET
IIN1-
IIN1+
VIN+
SCLK
RX/SDI
TX/SDO
DO2
DO1

Thermal Pad

VIN-
VDDA
DO3
CS5480

Clock Generator

Crystal In Crystal Out
1,24
XIN, XOUT — Connect to an external quartz crystal. Alternatively, an external clock can be supplied to the XIN pin to provide the system clock for the device.

Digital Pins and Serial Data I/O

Digital Outputs 13,14,15
Reset 2
Serial Data I/O 16,17
Serial Clock Input 18
Serial Mode Select 20
Chip Select 19
Operating Mode Select 21
DO1, DO2, DO3 — Configurable digital outputs for energy pulses, interrupt, tamper indication,
energy direction, and zero-crossings.
RESET — An active-low Schmitt-trigger input used to reset the chip.
TX/SDO, RX / SDI — UART /SPI serial data output/input.
SCLK — Serial clock for the SPI.
SSEL — Selects the type of the serial interface, UART or SPI™. Logic level one - UART
selected. Logic level zero - SPI selected.
CS — Chip select for the UART/SPI.
MODE — Connect to VDDA for proper operation.

Analog Inputs/Outputs

Voltage Input 5,6
Current Inputs 4,3,8,7
Voltage Reference 10,9

Power Supply Connections

Internal Digital Supply 23
Digital Ground 22
Positive Analog Supply 12
Analog Ground 11
Thermal Pad
VIN+, VIN- — Differential analog input for the voltage channel.
IIN1+, IIN1-, IIN2+, IIN2- — Differential analog inputs for the current channels.
VREF+, VREF- — The internal voltage reference. A 0.1 µF bypass capacitor is required
between these two pins.
VDDD — Decoupling pin for the internal 1.8V digital supply. A 0.1µF bypass capacitor is required between this pin and GNDD.
GNDD — Digital ground.
VDDA — The positive 3.3V analog supply.
GNDA — Analog ground.
No Electrical Connection.
-
6 DS980F3

2.1 Analog Pins

XIN XOUT
C1 = 22pF C2 = 22pF
Figure 1. Oscillator Connections
The CS5480 has a differential input (VIN) for voltage input and two differential inputsIIN1 IIN2) for current1 and current2 inputs. The CS5480 also has two voltage reference pins (VREF) between which a bypass capacitor should be placed.

2.1.1 Voltage Input

The output of the line voltage resistive divider or transformer is connected to the (VIN) input of the CS5480. The voltage channel is equipped with a 10x, fixed-gain amplifier. The full-scale signal level that can be applied to the voltage channel is ±250mV. If the input signal is a sine wave, the maximum RMS voltage is 250mVp/
70.7% of maximum peak voltage.

2.1.2 Current1 and Current2 Inputs

The output of the current-sensing shunt resistor, transformer, or Rogowski coil is connected to the IIN1 or IIN2 input pins of the CS5480. To accommodate different current-sensing elements, the current channel incorporates a programmable gain amplifier (PGA) with two selectable input gains, as described in Config0 register description section 6.6.1 Configuration 0
(Config0) – Page 0, Address 0 on page 37. There is a
10x gain setting and a 50x gain setting. The full-scale signal level for current channels is ±50 mV and ± 250 mV for 50x and 10x gain settings, respectively. If the input signal is a sine wave, the maximum RMS voltage is
35.35mV
70.7% of maximum peak voltage.

2.1.3 Voltage Reference

The CS5480 generates a stable voltage reference of
2.4V between the VREF pins. The reference system
also requires a filter capacitor of at least 0.1µF between the VREF pins.
The reference system is capable of providing a reference for the CS5480 but has limited ability to drive external circuitry. It is strongly recommended that nothing other than the required filter capacitor be connected to the VREF pins.

2.1.4 Crystal Oscillator

An external, 4.096 MHz quartz crystal can be connected to the XIN and XOUT pins, as shown in Figure 1. To re­duce system cost, each pin is supplied with an on-chip load capacitor.
2 176.78 mV
or 176.78mV
RMS
, which is approximately
RMS
, which is approximately
RMS
CS5480
Alternatively, an external clock source can be connected to the XIN pin.

2.2 Digital Pins

2.2.1 Reset Input

The active-low RESET pin, when asserted for longer than 120µs, will halt all CS5480 operations and reset internal hardware registers and states. When de-asserted, an initialization sequence begins, setting default register values. To prevent erroneous noise-induced resets to the CS5480, an external pull-up resistor and a decoupling capacitor are necessary on the RESET

2.2.2 Digital Outputs

The CS5480 provides three configurable digital outputs (DO1-DO3). They can be configured to output energy pulses, interrupt, zero-crossings, or energy directions. Refer to the description of the Config1 register in section
6.6.2 Configuration 1 (Config1) – Page 0, Address 1 on
page 38 for more details.

2.2.3 UART/SPI™ Serial Interface

The CS5480 provides five pins—SSEL, RX/SDI, TX/SDO, CS a host microcontroller and the CS5480.
SSEL is an input that, when low, indicates to the CS5480 to use the SPI port as the serial interface to communicate with the host microcontroller. The SSEL pin has an internal weak pull-up. When the SSEL pin is left unconnected or pulled high externally, the UART port is used as the serial interface.
pin.
, and SCLK—for communication between
DS980F3 7
2.2.3.1 SPI
UART
MASTER
SLAVE 0
SLAVE 1
SLAVE N
CS RX TX
CS RX TX
CS RX TX
CS0
CS1
CSN
RX
TX
0 1 2 7IDLE STOP3 4 5 6START
DATA
IDLE
The CS5480 provides a Serial Peripheral Interface (SPI) that operates as a slave device in 4-wire mode and supports multiple slaves on the SPI bus. The 4-wire SPI includes CS
CS
is the chip select input for the CS5480 SPI port. A
, SCLK, SDI, and SDO signals.
high logic level de-asserts it, tri-stating the SDO pin and clearing the SPI interface. A low logic level enables the SPI port. Although the CS
pin may be tied low for systems that do not require multiple SDO drivers, using the CS
signal is strongly recommended to achieve a
more reliable SPI communication.
SCLK is the serial clock input for the CS5480 SPI port. Serial data changes as a result of the falling edge of SCLK and is valid at the rising edge. The SCLK pin is a Schmitt-trigger input.
SDI is the serial data input to the CS5480.
SDO is the serial data output from the CS5480.
The CS5480 SPI transmits and receives data MSB first. Refer to Switching Characteristics on page 14 and
Figure 7 on page 15 for more detailed information of
SPI timing.
2.2.3.2 UART
The CS5480 device contains an asynchronous, full-duplex UART. The UART may be used in either standard 2-wire communication mode (RX/TX) for connecting a single device or 3-wire communication mode (RX/TX/CS When connecting a single CS5480 device, CS be held low to enable the UART. Multiple CS5480 devices can communicate to the same master UART in the 3-wire mode by pulling a slave CS data transmissions. Common RX and TX signals are provided to all the slave devices, and each slave device requires a separate CS communication to that slave. The multi-device UART mode connections are shown in Figure 2.
) for connecting multiple devices.
should
pin low during
signal for enabling
CS5480
Figure 2. Multi-device UART Connections
The multi-device UART mode timing diagram provides the timing requirements for the CS
8. Multi-device UART Timing on page15).
The CS5480 UART operates in 8-bit mode, which transmits a total of 10 bits per byte. Data is transmitted and received LSB first, with one start bit, eight data bits, and one stop bit.
Figure 3. UART Serial Frame Format
The baud rate is defined in the SerialCtrl register. After chip reset, the default baud rate is 600, if MCLK is
4.096MHz. The baud rate is based on the contents of bits BR[15:0] in the SerialCtrl register and is calculated as follows:
BR[15:0] = Baud Rate x (524288/MCLK)
or
Baud Rate = BR[15:0] /(524288 / MCLK)
The maximum baud rate is 512K if MCLK is 4.096 MHz.
control (see Figure

2.2.4 MODE Pin

The MODE pin must be tied to VDDA for normal operation. The MODE pin is used primarily for factory test procedures.
8 DS980F3
CS5480
-1
-0.5
0
0.5
1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Percent Error (%)
Current Dynamic Range (x : 1
)
Lagging PF = 0.5
Leading PF = 0.5
PF = 1
Figure 4. Active Energy Load Performance

3. CHARACTERISTICS AND SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Typ Max Unit
Positive Analog Power Supply VDDA 3.0 3.3 3.6 V Specified Temperature Range T

POWER MEASUREMENT CHARACTERISTICS

Parameter Symbol Min Typ Max Unit
Active Energy
(Note 1 and 2) Current Channel Input Signal Dynamic Range 4000:1
Reactive Energy
(Note 1 and 2) Current Channel Input Signal Dynamic Range 4000:1
Apparent Power
(Note 1 and 3) Current Channel Input Signal Dynamic Range 1000:1
Current RMS
(Note 1, 3, and 4) Current Channel Input Signal Dynamic Range 1000:1
Voltage RMS
(Note 1 and 3) Voltage Channel Input Signal Dynamic Range 20:1
Power Factor All Gain Ranges
(Note 1 and 3) Current Channel Input Signal Dynamic Range 1000:1
All Gain Ranges
All Gain Ranges
All Gain Ranges
All Gain Ranges
A
P
Avg
Q
Avg
S-±0.1-%
I
RMS
V
RMS
PF - ±0.1 - %
-40 - +85 °C
0.1- %
0.1- %
0.1- %
0.1- %
Notes: 1. Specifications guaranteed by design and characterization.
2. Active energy is tested with power factor (PF) = 1.0. Reactive energy is tested with Sin( level using a single energy pulse. Where: 1) One energy pulse = 0.5Wh or 0.5Varh; 2) VDDA = +3.3V, T
4.096MHz; 3) System is calibrated.
3. Calculated using register values; N
error calculated using register values. 1) VDDA = +3.3V; TA = 25°C; MCLK = 4.096MHz; 2) AC offset calibration applied.
4. I
RMS
4000.
) = 1.0. Energy error measured at system
= 25°C, MCLK =
A

TYPICAL LOAD PERFORMANCE

• Energy error measured at system level using single energy pulse; where one energy pulse = 0.5Wh or 0.5Varh.
•I
error calculated using register values.
RMS
• VDDA = +3.3V; T
= 25°C; MCLK = 4.096MHz.
A
DS980F3 9
CS5480
-1
-0.5
0
0.5
1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Percent Error (%)
Current Dynamic Range (x : 1
)
Lagging sin() = 0.5
Leading sin() = 0.5
sin() = 1
Figure 5. Reactive Energy Load Performance
-1
-0.5
0
0.5
1
0 500 1000 1500
Percent Error (%)
Current Dynamic range (x : 1)
IRMS Error
I
Error
Figure 6. I
RMS
Load Performance
RMS
10 DS980F3
CS5480

ANALOG CHARACTERISTICS

• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
• Typical characteristics and specifications are measured at nominal supply voltages and T
• VDDA = +3.3V ±10%; GNDA = GNDD = 0V. All voltages with respect to 0 V.
• MCLK = 4.096MHz.
Parameter Symbol Min Typ Max Unit

Analog Inputs (Current Channels)

Common Mode Rejection
(DC, 50, 60Hz) CMRR 80 - - dB
Common Mode+Signal -0.25 - VDDA V
Differential Full-scale Input Range
[(IIN+) – (IIN-)] (Gain = 50)
(Gain = 10)
IIN
-
-
Total Harmonic Distortion (Gain = 50) THD 90 100 - dB
Signal-to-Noise Ratio (SNR)
Crosstalk from Voltage Inputs at Full Scale
Crosstalk from Current Input at Full Scale
(Gain = 10)
(Gain = 50)
(50, 60Hz) --115-dB
(50, 60Hz) --115-dB
SNR
-
-
Input Capacitance IC - 27 - pF Effective Input Impedance EII 30 - - k
Offset Drift (Without the High-pass Filter) OD - 4.0 - µV/°C
Noise (Referred to Input)
(Gain = 10) (Gain = 50)
N
I
-
-
Power Supply Rejection Ratio (60Hz)
(Note 7) (Gain = 10)
(Gain = 50)
PSRR 60
68

Analog Inputs (Voltage Channels)

Common Mode Rejection
(DC, 50, 60Hz) CMRR 80 - - dB
Common Mode+Signal -0.25 - VDDA V
Differential Full-scale Input Range
[(VIN+) – (VIN-)] VIN - 250 - mV
Total Harmonic Distortion THD 80 88 - dB
Signal-to-Noise Ratio (SNR) SNR - 73 - dB
Crosstalk from Current Inputs at Full Scale
(50, 60Hz) --115-dB
Input Capacitance IC - 2.0 - pF Effective Input Impedance EII 2 - - M
Noise (Referred to Input) N
V
-40-µV
Offset Drift (Without the High-pass Filter) OD - 16.0 - µV/°C
Power Supply Rejection Ratio
(Note 7) (Gain = 10x)
(60Hz)
PSRR
60 65 - dB

Temperature

Temperature Accuracy
(Note 6) T-±5-°C
= 25°C.
A
250
50
80 80
15
3.5
65 75
-
-
-
-
-
-
-
-
µV µV
mV mV
dB dB
RMS
RMS
dB dB
RMS
P
P
P
DS980F3 11
Parameter Symbol Min Typ Max Unit
PSRR 20
150
V
eq
-----------
log=
TC
VREF
VREF
MAX
VREF
MIN
VREF
AVG
------------------------------------------------------------


1
TAMAX TAMIN
----------------------------------------------


1.0 10
6
=

Power Supplies

Power Supply Currents (Active State)
Power Consumption
(Note 5) Active State (VDDA = +3.3 V)
Notes: 5. All outputs unloaded. All inputs CMOS level.
6. Temperature accuracy measured after calibration is performed.
7. Measurement method for PSRR: VDDA = +3.3 V, a 150mV (zero-to-peak) (60Hz) sine wave is imposed onto the +3.3V DC supply voltage at the VDDA pin. The “+” and “-” input pins of both input channels are shorted to GNDA. The CS5480 is then commanded to continuous conversion acquisition mode, and digital output data is collected for the channel under test. The (zero-to-peak) value of the digital sinusoidal output signal is determined, and this value is converted into the (zero-to-peak) value of the sinusoidal voltage (measured in mV) that would need to be applied at the channel’s inputs in order to cause the same digital sinusoidal output. This voltage is then defined as V
I
(VDDA = +3.3V) PSCA - 3.9 - mA
A+
Stand-by State
PSRR is (in dB):
eq

VOLTAGE REFERENCE

Parameter Symbol Min Typ Max Unit
PC -
CS5480
12.9
-
4.5
-
-
mW mW
Reference
(Note 8)
Output Voltage VREF +2.3 +2.4 +2.5 V
Temperature Coefficient
Load Regulation
Notes: 8. It is strongly recommended that no connection other than the required filter capacitor be made to VREF±.
9. The voltage at VREF± is measured across the temperature range. From these measurements the following formula is used to calculate the VREF temperature coefficient:
10. Specified at maximum recommended output of 1µA sourcing. VREF is a sensitive signal; the output of the VREF circuit has a high output impedance so that the 0.1µF reference capacitor provides attenuation even to low-frequency noise, such as 50 Hz noise on the VREF output. Therefore VREF is intended for the CS5480 only and should not be connected to any external circuitry. The output impedance is sufficiently high that standard digital multimeters can significantly load this voltage. The accuracy of the metrology IC cannot be guaranteed when a multimeter or any component other than the 0.1µF capacitor is attached to VREF. If it is desired to measure VREF for any reason other than a very course indicator of VREF functionality, Cirrus recommends a very high input impedance multimeter such as the Keithley Model 2000 Digital Multimeter be used. Cirrus cannot guarantee the accuracy of the metrology with this meter connected to VREF.
(Note 9) TC
(Note 10) V
VREF
R
-25-ppm/°C
-30-mV
12 DS980F3
CS5480

DIGITAL CHARACTERISTICS

• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
• Typical characteristics and specifications are measured at nominal supply voltages and T
• VDDA = +3.3V ±10%; GNDA = GNDD = 0V. All voltages with respect to 0V.
• MCLK = 4.096MHz.
Parameter Symbol Min Typ Max Unit

Master Clock Characteristics

XIN Clock Frequency
Internal Gate Oscillator MCLK 2.5 4.096 5 MHz
XIN Clock Duty Cycle 40 - 60 %

Filter Characteristics

Phase Compensation Range
(60Hz, OWR = 4000Hz) -10.79 - +10.79 °
Input Sampling Rate - MCLK/8 - Hz Digital Filter Output Word Rate High-pass Filter Corner Frequency
(Both channels) OWR - MCLK/1024 - Hz
-3dB -2.0-Hz

Input/Output Characteristics

High-level Input Voltage (All Pins) V
Low-level Input Voltage (All Pins) V
High-level Output Voltage
(Note 12) All Other Outputs, I
Low-level Output Voltage
(Note 12) All Other Outputs, I
DO1-DO3, I
DO1-DO3, I
=+10mA
out
=+5mA
out
=-12mA
out
out
=-5mA
V
V
Input Leakage Current I
3-state Leakage Current I
Digital Output Pin Capacitance C
OZ
IH
IL
OH
OL
in
out
0.6(VDDA) - - V
--0.6V
VDDA-0.3 VDDA-0.3
-
-
1±10µA
--±10µA
-5-pF
= 25°C.
A
-
-
-
-
-
-
0.5
0.5
V V
V V
Notes: 11. All measurements performed under static conditions.
12. XOUT pin used for crystal only. Typical drive current <1mA.
DS980F3 13
CS5480

SWITCHING CHARACTERISTICS

• Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
• Typical characteristics and specifications are measured at nominal supply voltages and T
• VDDA = +3.3V ±10%; GNDA = GNDD = 0V. All voltages with respect to 0V.
• Logic Levels: Logic 0 = 0V, Logic 1 = VDDA.
Parameter Symbol Min Typ Max Unit
Rise Times
(Note 13) Any Digital Output Except DO1-DO3
Fall Times
(Note 13) Any Digital Output Except DO1-DO3
DO1-DO3
DO1-DO3
t
rise
t
fall

Start-up

Oscillator Start-up Time
XTAL = 4.096MHz (Note 14) t
ost

SPI Timing

Serial Clock Frequency (Note 15) SCLK - - 2 MHz
Serial Clock
Enable to SCLK Falling t
CS
Data Set-up Time prior to SCLK Rising t
Data Hold Time After SCLK Rising t
SCLK Rising Prior to CS
Disable t
SCLK Falling to New Data Bit t
Rising to SDO Hi-Z t
CS
Pulse Width High
Pulse Width Low
t
1
t
2
3
4
5
6
7
8
200 200
50 - - ns
50 - - ns
100 - - ns

UART Timing

Enable to RX START bit t
CS
STOP bit to CS
Disable to TX IDLE Hold Time t
CS
Notes: 13. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF.
14. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.
15. The maximum SCLK is 2 MHz during a byte transaction. The minimum 1µs idle time is required on the SCLK between two
Disable
consecutive bytes.
9
t
10
11
= 25°C.
A
-
-
-
-
50
50
-
-
1.0
-
1.0
-
µs ns
µs ns
-60-ms
-
-
-
-
ns ns
1--µs
--150ns
--250ns
5--ns
1--µs
--250ns
14 DS980F3
CS5480
SDO
SDI
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
CS
SCLK
MSB
MSB
MSB-1
MSB-1
INTERMEDIAT E B ITS
INTERMEDIAT E B ITS
LSB
LSB
Figure 7. SPI Data and Clock Timing
TX
RX
t
9
t
11
CS
START LSB
LSB
DATA MS B STOP
START DATA MSB
STOP
STOP
IDLE
OPTIONAL OVERLAP INSTRUCTION *
IDLE
t
10
IDLE
* Reading registers during the optional overlap instruction requires the st art to o ccur durin g the last byte tran smitted by the pa rt
Figure 8. Multi-device UART Timing
DS980F3 15
CS5480

ABSOLUTE MAXIMUM RATINGS

Parameter Symbol Min Typ Max Unit
DC Power Supplies
Input Current
Input Current for Power Supplies - - - ±50 -
Output Current
Power Dissipation
Input Voltage
Junction-to-Ambient Thermal Impedance
Ambient Operating Temperature T
Storage Temperature T
Notes: 16. VDDA and GNDA must satisfy [(VDDA) – (GNDA)] + 4.0V.
17. Applies to all pins, including continuous overvoltage conditions at the analog input pins.
18. Transient current of up to 100 mA will not cause SCR latch-up.
19. Applies to all pins, except VREF±
20. Total power dissipation, including all input currents and output currents.
21. Applies to all pins.
.
(Note 16) VDDA -0.3 - +4.0 V
(Notes 17 and 18)
(Note 19)
(Note 20) PD -- 500mW
(Note 21) V
2 Layer Board 4 Layer Board
I
I
OUT
IN
IN
JA
A
stg
-- ±10mA
-- 100mA
- 0.3 - (VDDA) + 0.3 V
-
-
55 46
-
-
-40 - 85 °C
-65 - 150 °C
°C/W °C/W
WARNING:
Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
16 DS980F3

4. SIGNAL FLOW DESCRIPTION

MUX
SINC
3
IIN2±
SINC
3
PGA
HPF
DELAY
CTRL
2
MUX
PMF
HPF
PMF
IIR
Phase
Shift
Config 2
DELAY
CTRL
INT
Regi sters
Q2
V2
P2
I2
SYS
GAIN
... ...
I2FLT[1:0]V2FLT[1:0]
V2
DCOFF
I2
DCOFF
I2
GAIN
V2
GAIN
PC
... ...
FPCC2[8:0]CPCC2[1: 0]
...
IIR
Epsilon
From V Channel ADC
4th Order

Modulator
Figure 9. Signal Flow for V1, I1, P1, Q1 Measurements
MUX
SINC
3
IIN2±
SINC
3
PGA
HPF
DELAY
CTRL
2
MUX
PMF
HPF
PMF
IIR
Phase
Shift
Config 2
DELAY
CTRL
INT
Regi sters
Q2
V2
P2
I2
SYS
GAIN
... ...
I2FLT[1:0]V2FLT[1:0]
V2
DCOFF
I2
DCOFF
I2
GAIN
V2
GAIN
PC
... ...
FPCC2[8:0]CPCC2[1: 0]
...
IIR
Epsilon
From V Channel ADC
4th Order

Modulator
Figure 10. Signal Flow for V2, I2, P2, and Q2 Measurements
The signal flow for voltage measurement, current measurement, and the other calculations is shown in
Figures 9, 10, and 11.
The signal flow consists of two current channels and a voltage channel. Even though the CS5480 has only one voltage channel or voltage analog signal input, there are two separate voltage digital signal paths (V1 and V2). Both V1 and V2 come from the same ADC output. Each current and voltage channel has its own differential input pin.

4.1 Analog-to-Digital Converters

All three input channels use fourth-order delta-sigma modulators to convert the analog inputs to single-bit digital data streams. The converters sample at a rate of MCLK/8. This high sampling provides a wide dynamic range and simplifies anti-alias filter design.
CS5480

4.2 Decimation Filters

The single-bit modulator output data is widened to 24 bits and down sampled to MCLK/1024 with low-pass decimation filters. These decimation filters are third-order Sinc filters. The outputs of the filters are passed through an IIR "anti-sinc" filter.

4.3 IIR Filters

The IIR filters are used to compensate for the amplitude roll-off of the decimation filters. The droop-correction filter flattens the magnitude response of the channel out to the Nyquist frequency, thus allowing for accurate measurements of up to 2kHz (MCLK = 4.096MHz). By default, the IIR filters are enabled. The IIR filters can be bypassed by setting the IIR_OFF bit in the Config2 register.
DS980F3 17
CS5480
N
÷
N
N
÷
N
N
÷
N
N
÷
N
Regis ters
MUX
...
...
APCM
Config 2
V1(V2)
I1 (I2)
P1 (P2)
Q1 (Q2)
I1
ACOFF
(I2
ACOFF
)
S1 (S2)
PF1 (PF2)
X
I1
RMS
(I2
RMS
)
V1
RMS
(V2
RMS
)
Q1
AVG
(Q2
AVG
)
P1
AVG
(P2
AVG
)
-
+
Q1
OFF
(Q2
OFF
)
+
+
P1
OFF
(P2
OFF
)
+
+
X
X
+
+
Inverse
Figure 11. Low-rate Calculations

4.4 Phase Compensation

Phase compensation changes the phase of voltage relative to current by adding a delay in the decimation filters. The amount of phase shift is set by the PC register bits CPCCx[1:0] and FPCCx[8:0] for current channels. For voltage channels, only bits CPCCx[1:0] affect the delay.
Fine phase compensation control bits, FPCCx[8:0], provide up to 1/OWR delay in the current channels. Coarse phase compensation control bits, CPCCx[1:0], provide an additional 1/OWR delay in the current channel or up to 2/OWR delay in the voltage channel. Negative delay in voltage channel can be implemented by setting a longer delay in the current channel than the voltage channel. For a OWR of 4000Hz, the delay range is ±500µs, a phase shift of ±8.99° at 50Hz and ±10.79° at 60Hz. The step size is 0.008789° at 50Hz and
0.010547° at 60Hz.

4.5 DC Offset and Gain Correction

The system and CS5480 inherently have component tolerances and gain and offset errors, which can be removed using the gain and offset registers. Each measurement channel has its own set of gain and offset registers. For every instantaneous voltage and current sample, the offset and gain values are used to correct DC offset and gain errors in the channel (see section 7.
System Calibration on page 63 for more details).

4.6 High-pass and Phase Matching Filters

Optional high-pass filters (HPF in Figures 9 and 10) remove any DC component from the selected signal paths. Each power calculation contains a current and voltage channel. If an HPF is enabled in only one channel, a phase matching filter (PMF) should be
applied to the other channel to match the phase response of the HPF. For AC power measurement, high-pass filters should be enabled on the voltage and current channels. For information about how to enable and disable the HPF or PMF on each channel, refer to section 6.6.3 Configuration 2 (Config2) – Page 16,
Address 0 on page 40.

4.7 Digital Integrators

Optional digital integrators (INT in Figures 9 and 10) are implemented on both current channels (I1, I2) to compensate for the 90º phase shift and 20dB/decade gain generated by the Rogowski coil current sensor. When a Rogowski coil is used as the current sensor, the integrator (INT) should be enabled on that current channel. For information about how to enable and disable the INT on each current channel, refer to section
6.6.3 Configuration 2 (Config2) – Page 16, Address 0 on
page 40.

4.8 Low-rate Calculations

All the RMS and power results come from low-rate cal­culations by averaging the output word rate (OWR) in­stantaneous values over N samples where N is the value stored in the SampleCount register. The low-rate interval or averaging period is N divided by OWR (4000Hz if MCLK = 4.096MHz). The CS5480 provides two averaging modes for low-rate calculations: Fixed Number of Samples Averaging mode and Line-cycle Synchronized Averaging mode. By default, the CS5480 averages with the Fixed Number of Samples Averaging mode. By setting the AVG_MODE bit in the Config2 reg­ister, the CS5480 will use the Line-cycle Synchronized Averaging mode.
18 DS980F3
CS5480
I
RMS
I
n
2
n0=
N1
N
--------------------
=
V
RMS
V
n
2
n0=
N1
N
----------------------
=
[Eq. 1]
SV
RMSIRMS
=
[Eq. 2]
SQ
AVG
2
P
AVG
2
+=
[Eq. 3]
PF
P
ACTIVE
S
----------------------
=
[Eq. 4]

4.8.1 Fixed Number of Samples Averaging

N is the preset value in the SampleCount register and should not be set less than 100. By default, the Sample- Count is 4000. With MCLK = 4.096MHz, the averaging period is fixed at N/4000 = 1 second, regardless of the line frequency.

4.8.2 Line-cycle Synchronized Averaging

When operating in Line-cycle Synchronized Averaging mode, and when line frequency measurement is enabled (see section 5.4 Line Frequency Measurement on page 22), the CS5480 uses the voltage (V) channel zero crossings and measured line frequency to automatically adjust N such that the averaging period will be equal to the number of half line-cycles in the CycleCount register. For example, if the line frequency is 51Hz, and the CycleCount register is set to 100, N will be 4000
(100 / 2) / 51 = 3921 during continuous
conversion. N is self-adjusted according to the line frequency; therefore, the averaging period is always close to the whole number of half line-cycles, and the low-rate calculation results will minimize ripple and maximize resolution, especially when the line frequency varies. Before starting a low-rate conversion in Line-cycle Synchronized Averaging mode, the SampleCount register should not be changed from its default value of 4000, and bit AFC of the Config2 register must be set. During continuous conversion, the host processor should not change the SampleCount register.

4.8.3 RMS Current and Voltage

The root mean square (RMS in Figure 11) calculations are performed on N instantaneous current and voltage samples using Equation 1:

4.8.5 Reactive Power

Instantaneous reactive power (Q1, Q2) are sample rate results obtained by multiplying instantaneous current (I1, I2) by instantaneous quadrature voltage (V1Q, V2Q), which are created by phase shifting the instantaneous voltage (V1, V2) 90 degrees using first-order integrators (see Figures 9 and 11). The gain of these integrators is inversely related to line frequency, so their gain is corrected by the Epsilon register, which is based on line frequency. Reactive power (Q1
AVG
, Q2
) is generated by integrating the
AVG
instantaneous quadrature power over N samples.

4.8.6 Apparent Power

By default, the CS5480 calculates the apparent power (S1, S2) as the product of RMS voltage and current as shown in Equation 2:
The CS5480 also provides an alternate apparent power calculation method, which uses real power (P1
P2
) and reactive power (Q1
AVG
AVG
, Q2
AVG
AVG
) to calcu-
late apparent power, as shown in Equation 3:
The APCM bit in the Config2 register controls which method is used for apparent power calculation.

4.8.7 Peak Voltage and Current

Peak current (I1 (V
) are calculated over N samples and recorded in
PEAK
the corresponding channel peak register documented in the register map. This peak value is updated every N samples.
PEAK
, I2
) and peak voltage
PEAK
,

4.8.8 Power Factor

Power factor (PF1, PF2) is active power divided by ap­parent power as shown in Equation 4. The sign of the power factor is determined by the active power.

4.8.4 Active Power

The instantaneous voltage and current samples are multiplied to obtain the instantaneous power (P1, P2) (see Figures 9 and 11). The product is then averaged over N samples to compute active power (P1
P2
).
AVG
DS980F3 19
AVG

4.9 Average Active Power Offset

The average active power offset registers, P1
,
(P2 resident in the system not originating from the power line. Residual power offsets are usually caused by crosstalk into current channels from voltage channels, or from ripple on the meter’s or chip’s power supply, or from inductance from a nearby transformer.
), can be used to offset erroneous power sources
OFF
OFF
CS5480
These offsets can be either positive or negative, indicating crosstalk coupling either in phase or out of phase with the applied voltage input. The power offset registers can compensate for either condition.
To use this feature, measure the average power at no load. Take the measured result (from the P1 (P2
) register), invert (negate) the value, and write it
AVG
AVG
to the associated average active power offset register,
P1
OFF
(P2
OFF
).

4.10 Average Reactive Power Offset

The average reactive power offset registers, Q1 (Q2
), can be used to offset erroneous power
OFF
sources resident in the system not originating from the
OFF
power line. Residual reactive power offsets are usually caused by crosstalk into current channels from voltage channels, or from ripple on the meter’s or chip’s power supply, or from inductance from a nearby transformer.
These offsets can be either positive or negative, depending on the phase angle between the crosstalk coupling and the applied voltage. The reactive power offset registers can compensate for either condition. To use this feature, measure the average reactive power at no load. Take the measured result from the
Q1
AVG
(Q2
) register, invert (negate) the value and
AVG
write it to the associated reactive power offset register,
Q1
OFF
(Q2
OFF
).
20 DS980F3
CS5480
VDDA
POR_Rough_VD DA
POR_F ine_V DDA
VDDD
POR_Rough_VDDD
POR_Fine_VDDD
POR_F ine_V DDA POR_Fine_VDDD
Master Reset
130ms
V
th1
V
th2
V
th5
V
th6
V
th3
V
th4
V
th7
V
th8
Figure 12. Power-on Reset Timing

5. FUNCTIONAL DESCRIPTION

5.1 Power-on Reset

The CS5480 has an internal power supply supervisor circuit that monitors the VDDA and VDDD power supplies and provides the master reset to the chip. If any of these voltages are in the reset range, the master reset is triggered.
The CS5480 has dedicated power-on reset (POR) circuits for the analog supply and digital supply. During power-up, both supplies have to be above the rising threshold for the master reset to be de-asserted.
Each POR is divided into two blocks: rough and fine. Rough POR triggers the fine POR. Rough POR depends only on the supply voltage. The trip point for the fine POR is dependent on bandgap voltage for precise control. The POR circuit also acts as a brownout detect. The fine POR detects supply drops and asserts the master reset. The rough and fine PORs have hysteresis in their rise and fall thresholds, which prevents the reset signal from chattering.
Figure 9 shows the POR outputs for each of the power supplies. The POR_Fine_VDDA and POR_Fine_VDDD signals are AND-ed to form the actual power-on reset signal to the digital circuity. The digital circuitry, in turn, holds the master reset signal for 130ms and then de-asserts the master reset.
Typ i cal P OR
Threshold
VDDA
VDDD
Table 1. POR Thresholds
Rising Falling
V
Rough
Fine
Rough
Fine
= 2.34V V
th1
= 2.77V V
V
th2
= 1.20V V
V
th3
= 1.51V V
V
th4
th6
th5
th8
th7
=2.06V
=2.59V
=1.06V
=1.42V

5.2 Power Saving Modes

Power Saving modes for the CS5480 are accessed through the Host Commands (see section 6.1 Host
Commands on page 29).
• Standby: Powers down all the ADCs, rough buffer, and the temperature sensor. Standby mode disables the system time calculations. Use the wake-up command to come out of standby mode.
• Wake-up: Clears the ADC power-down bits and starts the system time calculations.
After any of these commands are completed, the DRDY bit is set in the Status0 register.

5.3 Zero-crossing Detection

Zero-crossing detection logic is implemented in the CS5480. One current and one voltage channel can be selected for zero-crossing detection. The IZX_CH control bit in the Config0 register is used to select the zero-crossing channel. A low-pass filter can be enabled by setting ZX_LPF bit in register Config2. The low-pass filter has a cut-off frequency of 80Hz. It is used to eliminate any harmonics and help the zero-crossing detection on the 50Hz or 60 Hz fundamental component. The zero-crossing level registers are used to set the minimum threshold over which the channel peak has to exceed in order for the zero-crossing detection logic to function. There are two separate zero-crossing level registers: VZX for the voltage channels, and IZX for the current channels.
is the threshold
LEVEL
is the threshold
LEVEL
DS980F3 21
Loading...
+ 49 hidden pages