CIRRUS LOGIC CS5461A Service Manual

CS5461A
Single Phase, Bi-directional Power/Energy IC
Features
• Energy Data Linearity: ±0.1% of Reading over 1000:1 Dynamic Range
- Instantaneous Voltage, Current, and Power
- I
and V
RMS
- Energy-to-pulse Conversion for Mechanical Counter/Stepper Motor Drive
- System Calibrations and Phase Compensation
- Temperature Sensor
- Voltage Sag Detect
• Meets Accuracy Spec for IEC, ANSI, & JIS.
• Low Power Consumption
• Current Input Optimized for Sense Resistor.
• GND-referenced Signals with Single Supply
• On-chip 2.5 V Reference (25 ppm/°C typ)
• Power Supply Monitor
• Simple Three-wire Digital Serial Interface
• “Auto-boot” Mode from Serial E
• Power Supply Configurations:
VA+ = +5 V; AGND = 0 V; VD+ = +3.3 V to +5 V
, Apparent and Active (Real) Power
RMS
2
PROM.
Description
The CS5461A is an integrated power measure­ment device which combines two ∆Σ analog-to-digital converters, power calculation engine, energy-to-frequency converter, and a serial interface on a single chip. It is designed to accurately measure instantaneous current and voltage, and calculate V neous power, apparent power, and active power for single-phase, 2- or 3-wire power metering applications.
The CS5461A is optimized to interface to shunt resistors or current transformers for current mea­surement, and to resistive dividers or potential transformers for voltage measurement.
The CS5461A features a bi-directional serial in­terface for communication with a processor, and a programmable energy-to-pulse output func­tion. Additional features include on-chip functionality to facilitate system-level calibration, temperature sensor, voltage sag detection, and phase compensation.
ORDERING INFORMATION:
See Page 41.
RMS
, I
, instanta-
RMS
VREFOUT
http://www.cirrus.com
IIN+
IIN-
VREFIN
VIN+
VIN-
VA+ VD+
PGA
x1
x10
Voltage
Reference
AGND
4th Order ∆Σ
Modulator
2nd Order ∆Σ
Modulator
Power
Monitor
PFMON
Copyright © Cirrus Logic, Inc. 2005
RESET
Digital
Filter
Temperature
Sensor
Digital
Filter
System
Clock
(All Rights Reserved)
HPF
Option
HPF
Option
Clock
/K
Generator
XIN XOUT CPUCLK DGND
Power
Calculation
Engine
Calibration
Serial
Interface
E-to-F
MODE
CS
SDI
SDO
SCLK
INT
E1 E2 E3
AUG ‘05
DS661F1
CS5461A

TABLE OF CONTENTS

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Characteristics & Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Voltage and Current Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Linearity Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Voltage Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Current Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 High-pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Performing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Energy Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.1 Normal Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.2 Alternate Pulse Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4.3 Mechanical Counter Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4.4 Stepper Motor Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4.5 Pulse Output E3
5.4.6 Anti-creep for the Pulse Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4.7 Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Voltage Sag-detect Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 On-chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.9 Power-down States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.10 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.11 Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.11.1 Typical Interrupt Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.12 Serial Port Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.12.1 Serial Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.13 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 DS661F1
CS5461A
6. Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Current and Voltage DC Offset Register ( I
6.3 Current and Voltage Gain Register ( Ign ,Vgn ) . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Cycle Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5 PulseRateE
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1,2
6.6 Instantaneous Current, Voltage and Power Registers ( I , V , P ) . . . . . . . . 27
6.7 Active (Real) Power Registers ( P
6.8 I
6.9 Power Offset Register ( P
RMS
and V
Registers ( I
RMS
, V
RMS
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
off
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Active
) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RMS
6.10 Status Register and Mask Register ( Status , Mask ) . . . . . . . . . . . . . . . . 28
6.11 Current and Voltage AC Offset Register ( V
6.12 PulseRateE
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3
6.13 Temperature Register ( T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.14 System Gain Register ( SYS
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Gain
6.15 Pulsewidth Register ( PW ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.16 Voltage Sag Duration Register ( VSAG
6.17 Voltage Sag Level Register ( VSAG
Duration
) . . . . . . . . . . . . . . . . . . . . . . . . 30
Level
6.18 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.19 Temperature Gain Register ( T
6.20 Temperature Offset Register ( T
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Gain
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
off
6.21 Apparent Power Register ( S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DCoff
ACoff
,V
) . . . . . . . . . . . . . . 26
DCoff
, I
) . . . . . . . . . . . . . 29
ACoff
) . . . . . . . . . . . . . . . . . . . . 30
7. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 Channel Offset and Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1 Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1.1 Duration of Calibration Sequence . . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2.1 DC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2.2 AC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3 Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3.1 AC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3.2 DC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.4 Order of Calibration Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Active Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2
8. Auto-boot Mode Using E
PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.1 Auto-Boot Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Auto-Boot Data for E2PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Suggested E2PROM Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . 41
13. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DS661F1 3
CS5461A

LIST OF FIGURES

Figure 1. CS5461A Read and Write Timing Diagrams ............................................................... 11
Figure 2. Data Flow..................................................................................................................... 13
Figure 3. Normal Format on pulse outputs
Figure 4. Alternate Pulse Format on
Figure 5. Mechanical Counter Format on
Figure 6. Stepper Motor Format on
Figure 7. Voltage Sag Detect...................................................................................................... 19
Figure 8. Oscillator Connection................................................................................................... 20
Figure 9. Calibration Data Flow .................................................................................................. 33
Figure 10. System Calibration of Offset. ..................................................................................... 33
Figure 11. System Calibration of Gain ........................................................................................ 34
Figure 12. Example of AC Gain Calibration ................................................................................ 34
Figure 13. Another Example of AC Gain Calibration .................................................................. 34
Figure 14. Typical Interface of E
Figure 15. Typical Connection Diagram (Single-phase, 2-wire – Direct Connect to Power Line)37
Figure 16. Typical Connection Diagram (Single-phase, 2-wire – Isolated from Power Line)...... 38
Figure 17. Typical Connection Diagram (Single-phase, 3-wire).................................................. 38
Figure 18. Typical Connection Diagram (Single-phase, 3-wire – No Neutral Available)............. 39
E1 and E2............................................................................ 18
2
PROM to CS5461A ................................................................ 36
E1 and E2 ................................................................ 16
E1 and E2 .......................................................................... 17
E1 and E2 .................................................................. 17

LIST OF TABLES

Table 1. Current Channel PGA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2. E1
Table 3. Interrupt Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 DS661F1
and E2 Pulse Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CS5461A

1. OVERVIEW

The CS5461A is a CMOS monolithic power measurement device with a computation engine and an en­ergy-to-frequency pulse output. The CS5461A combines a programmable-gain amplifier, two ∆Σ ana­log-to-digital converters (ADCs), system calibration and a computation engine on a single chip.
The CS5461A is designed for power measurement applications and is optimized to interface to a cur­rent-sense resistor or transformer for current measurement, and to a resistive divider or potential trans­former for voltage measurement. The voltage and current channels provide programmable gains to accommodate various input levels from a wide variety of sensing elements. With single +5 V supply on VA+/AGND, both of the CS5461A’s input channels can accommodate common mode as well as signal levels between (AGND - 0.25 V) and VA+.
Additionally, the CS5461A is equipped with a computation engine that calculates I power and active (real) power. To facilitate communication to a microprocessor, the CS5461A includes a simple three-wire serial interface which is SPI™ and Microwire™ compatible. The CS5461A provides three outputs for energy registration. E1 stepper motor, or interface to a microprocessor. The pulse output E3 ibration.
and E2 are designed to directly drive a mechanical counter or
is designed to assist with meter cal-
RMS
, V
, apparent
RMS
DS661F1 5

2. PIN DESCRIPTION

CS5461A
Clock Generator
Crystal Out
1,24
Crystal In
CPU Clock Output 2
Control Pins and Serial Data I/O
Serial Clock Input 5
Serial Data Output 6
Chip Select 7
Mode Select 8
High Frequency Energy
18
Output
Reset 19
Interrupt 20
Energy Output 21,22
Serial Data Input 23
Analog Inputs/Outputs
Differential Voltage Inputs 9,10
Differential Current Inputs 15,16
Voltage Reference Output 11
Voltage Reference Input 12
Power Supply Connections
Positive Digital Supply 3
Digital Ground 4
Positive Analog Supply 14
Analog Ground 13
Power Fail Monitor
17
XOUT 1Crystal Out
CPUCLK 2CPU Clock Output
VD+ 3Positive Digital Supply
DGND 4Digital Ground
SCLK 5Serial Clock
SDO 6Serial Data Ouput
CS 7Chip Select
MODE 8Mode Select
VIN+ 9Differential Voltage Input
VIN- 10Differential Voltage Input
VREFOUT 11Voltage Reference Output
VREFIN 12Voltage Reference Input
XOUT, XIN - The output and input of an inverting amplifier. Oscillation occurs when connected to
a crystal, providing an on-chip system clock. Alternatively, an external clock can be supplied to the XIN pin to provide the system clock for the device.
CPUCLK - Output of on-chip oscillator which can drive one standard CMOS load.
SCLK - A Schmitt Trigger input pin. Clocks data from the SDI pin into the receive buffer and out of
the transmit buffer onto the SDO pin when CS
SDO -Serial port data output pin.SDO is forced into a high impedance state when CS is high.
CS - Low, activates the serial port interface.
MODE - High, enables the “auto-boot” mode. The mode pin is pulled low by an internal resistor.
E3 - Active low pulses with an output frequency proportional to the active power. Used to assist in
system calibration.
RESET - A Schmitt Trigger input pin. Low activates Reset, all internal registers (some of which drive output pins) are set to their default states.
INT - Low, indicates that an enabled event has occurred.
E1, E2 - Active low pulses with an output frequency proportional to the active power. Indicates if
the measured energy is negative.
SDI - Serial port data input pin. Data will be input at a rate determined by SCLK.
VIN+, VIN- - Differential analog input pins for the voltage channel.
IIN+, IIN- - Differential analog input pins for the current channel.
VREFOUT - The on-chip voltage reference output. The voltage reference has a nominal magni-
tude of 2.5 V and is referenced to the AGND pin on the converter.
VREFIN - The input to this pin establishes the voltage reference for the on-chip modulator.
VD+ - The positive digital supply.
DGND - Digital Ground.
VA+ - The positive analog supply.
AGND - Analog ground.
PFMON - The power fail monitor pin monitors the analog supply. If PFMON’s voltage threshold is
not met, a Low-Supply Detect (LSD) bit is set in the status register.
XIN24 Crystal In SDI23 Serial Data Input
22
E2
Energy Output 2
E121 Energy Output 1 INT20 Interrupt RESET19 Reset E318 High Frequency Energy Output PFMON17 Power Fail Monitor IIN+16 Differential Current Input IIN-15 Differential Current Input VA+14 Positive Analog Supply AGND13 Analog Ground
is low.
6 DS661F1
CS5461A

3. CHARACTERISTICS & SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Typ Max Unit
Positive Digital Power Supply VD+ 3.135 5.0 5.25 V Positive Analog Power Supply VA+ 4.75 5.0 5.25 V Voltage Reference VREFIN - 2.5 - V Specified Temperature Range T
A

ANALOG CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = VD+ = 5 V ±5%; AGND = DGND = 0 V; VREFIN = +2.5 V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
Parameter Symbol Min Typ Max Unit
Linearity Performance
Active Power Accuracy All Gain Ranges (Note 1) Input Range 0.1% - 100%
Current RMS Accuracy All Gain Ranges (Note 1) Input Range 1.0% - 100%
Input Range 0.3% - 1.0% Input Range 0.1% - 0.3%
Voltage RMS Accuracy All Gain Ranges (Note 1) Input Range 5% - 100%
Analog Inputs (Both Channels)
Common Mode Rejection (DC, 50, 60 Hz) CMRR 80 - - dB Common Mode + Signal All Gain Ranges -0.25 - VA+ V
Analog Inputs (Current Channel)
Differential Input Range (Gain = 10) [(IIN+) - (IIN-)] (Gain = 50)
Total Harmonic Distortion (Gain = 50) THD 80 94 - dB Crosstalk with Voltage Channel at Full Scale (50, 60 Hz) - -115 - dB Input Capacitance (Gain = 10)
(Gain = 50)
Effective Input Impedance EII 30 - - k Noise (Referred to Input) (Gain = 10)
(Gain = 50)
Offset Drift (Without the high-pass filter) OD - 4.0 - µV/°C Gain Error (Note 2) GE - ±0.4 %
Analog Inputs (Voltage Channel)
Differential Input Range {(VIN+) - (VIN-)} VIN - 500 - mV
Total Harmonic Distortion THD 65 75 - dB Crosstalk with Current Channel at Full Scale (50, 60 Hz) - -70 - dB Input Capacitance All Gain Ranges IC - 0.2 - pF Effective Input Impedance EII 2 - - M Noise (Referred to Input) N
Offset Drift (Without the high-pass Filter) OD - 16.0 - µV/°C Gain Error (Note 2) GE - ±3.0 %
P
Active
I
RMS
V
RMS
IIN -
IC -
N
I
V
-40 - +85 °C
0.1- % %
-
-
-
±0.1 ±0.2 ±3.0
-
-
-
% % %
0.1- %
500
-
100
32
-
-
-
52
-
-
--140µV
-
-
-
-
22.5
4.5
mV mV
µV µV
P-P
P-P
pF pF
rms
rms
P-P
rms
DS661F1 7
CS5461A
ANALOG CHARACTERISTICS (Continued)
Parameter Symbol Min Typ Max Unit
Temperature Channel
Temperature Accuracy T - ±5 - °C
Power Supplies
Power Supply Currents (Active State) I
I
(VA+ = VD+ = 5 V)
D+
I
(VA+ = 5 V, VD+ = 3.3 V)
D+
Power Consumption Active State (VA+ = VD+ = 5 V) (Note 3) Active State (VA+ = 5 V, VD+ = 3.3 V)
Stand-By State
Sleep State
Power Supply Rejection Ratio (DC, 50 and 60 Hz) (Note 4) Voltage Channel
Current Channel PFMON Low-voltage Trigger Threshold (Note 5) PMLO 2.3 2.45 - V PFMON High-voltage Power-On Trip Point (Note 6) PMHI - 2.55 2.7 V
1. Applies when the HPF option is enabled.
2. Applies before system calibration.
3. All outputs unloaded. All inputs CMOS level.
4. Measurement method for PSRR: VREFIN tied to VREFOUT, VA+ = VD+ = 5 V, a 150 mV (zero-to-peak) (60 Hz) sinewave is imposed onto the +5 V DC supply voltage at VA+ and VD+ pins. The “+” and “-” input pins of both input channels are shorted to AGND. Then the CS5461A is commanded to continuous conversion acquisition mode, and digital output data is collected for the channel under test. The (zero-to-peak) value of the digital sinusoidal output signal is determined, and this value is converted into the (zero-to-peak) value of the sinusoidal voltage (measured in mV) that would need to be applied at the channel’s inputs, in order to cause the same digital sinusoidal output. This voltage is then defined as Veq. PSRR is then (in dB)
PSRR 20
5. When voltage level on PFMON is sagging, and LSD bit is at 0, the voltage at which LSD bit is set to 1.
6. If the LSD bit has been set to 1 (because PFMON voltage fell below PMLO), this is the voltage level on PFMON at which the LSD bit can be permanently reset back to 0.
PSCA
A+
PSCD PSCD
PC -
PSRR 45
⎧⎫
150
----------
log=
⎨⎬
V
⎩⎭
-
-
-
-
-
-
70
:
eq
1.3
2.9
1.7
21 12
8
10
65 75
-
-
-
28
16.5
-
-
-
-
mA mA mA
mW mW mW
µW
dB dB

VOLTAGE REFERENCE

Parameter Symbol Min Typ Max Unit
Reference Output
Output Voltage VREFOUT +2.4 +2.5 +2.6 V
Temperature Coefficient (Note 7) TC Load Regulation (Note 8) ∆V
Reference Input
VREF
R
Input Voltage Range VREFIN +2.4 +2.5 +2.6 V
Input Capacitance - 4 - pF
Input CVF Current - 25 - nA
Notes: 7. The voltage at VREFOUT is measured across the temperature range. From these measurements the following
formula is used to calculate the VREFOUT Temperature Coefficient:.
TC
VREF
8. Specified at maximum recommended output of 1 µA, source or sink.
(VREFOUTMAX - VREFOUTMIN)
=
(
VREFOUT
AVG
(
1
(
T
MAX
- T
A
8 DS661F1
A
- 25 60 ppm/°C
-610mV
MIN
(
1.0 x 10
(
(
6
CS5461A

DIGITAL CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = VD+ = 5V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
Parameter Symbol Min Typ Max Unit
Master Clock Characteristics
Master Clock Frequency Internal Gate Oscillator (Note 10) MCLK 2.5 4.096 20 MHz
Master Clock Duty Cycle 40 - 60 %
CPUCLK Duty Cycle (Note 11 and 12) 40 60 %
Filter Characteristics
Phase Compensation Range (Voltage Channel, 60 Hz) -2.8 - +2.8 °
Input Sampling Rate DCLK = MCLK/K - DCLK/8 - Hz
Digital Filter Output Word Rate (Both Channels) OWR - DCLK/1024 - Hz
High-pass Filter Corner Frequency -3 dB - 0.5 - Hz
Full Scale Calibration Range (
Channel-to-channel Time-shift Error (Note 14) 1.0 µs
Input/Output Characteristics
High-level Input Voltage
All Pins Except XIN and SCLK and RESET
Low-level Input Voltage (VD = 5 V)
All Pins Except XIN and SCLK and RESET
Low-level Input Voltage (VD = 3.3 V)
All Pins Except XIN and SCLK and RESET
High-level Output Voltage I
Low-level Output Voltage I
Input Leakage Current (Note 15) I
3-state Leakage Current I
Digital Output Pin Capacitance C
Referred to Input) (Note 13) FSCR 25 - 100 %F.S.
V
XIN
SCLK and RESET
XIN
SCLK and RESET
XIN
SCLK and RESET
= +5 mA V
out
= -5 mA V
out
IH
V
V
OH
OL
in
OZ
out
0.6 VD+
(VD+) - 0.5
0.8 VD+
IL
-
-
-
IL
-
-
-
-
-
-
-
-
-
0.2 VD+
-
-
-
0.2 VD+
(VD+) - 1.0 - - V
--0.4V
1±10µA
--±10µA
-5-pF
-
-
-
0.8
1.5
0.48
0.3
V V V
V V V
V V V
Notes: 9. All measurements performed under static conditions.
10. If a crystal is used, then XIN frequency must remain between 2.5 MHz - 5.0 MHz. If an external oscillator is used, XIN frequency range is 2.5 MHz - 20 MHz, but K must be set so that MCLK is between 2.5 MHz - 5.0 MHz.
11. If external MCLK is used, then the duty cycle must be between 45% and 55% to maintain this specification.
12. The frequency of CPUCLK is equal to MCLK.
13. The minimum FSCR is limited by the maximum allowed gain register value. The maximum FSCR is limited by the full-scale signal applied to the channel input.
14. Configuration Register bits PC[6:0] are set to “0000000”.
15. The MODE pin is pulled low by an internal resistor.
DS661F1 9
CS5461A

SWITCHING CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = 5 V ±5% VD+ = 3.3 V ±5% or 5 V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
Logic Levels: Logic 0 = 0 V, Logic 1 = VD+.
Parameter Symbol Min Typ Max Unit
Rise Times Any Digital Input Except SCLK (Note 16) SCLK
Any Digital Output
Fall Times Any Digital Input Except SCLK (Note 16) SCLK
Any Digital Output
Start-up
Oscillator Start-Up Time XTAL = 4.096 MHz (Note 17) t
Serial Port Timing
Serial Clock Frequency SCLK - - 2 MHz
Serial Clock Pulse Width High
Pulse Width Low
SDI Timing
CS Falling to SCLK Rising t
Data Set-up Time Prior to SCLK Rising t
Data Hold Time After SCLK Rising t
SDO Timing
CS Falling to SDO Driving t
SCLK Falling to New Data Bit (hold time) t
Rising to SDO Hi-Z t
CS
Auto-Boot Timing
Serial Clock Pulse Width Low
Pulse Width High
MODE setup time to RESET
RESET
CS
SCLK falling to CS
CS
rising to CS falling t
falling to SCLK rising t
rising t
rising to driving MODE low (to end auto-boot sequence). t
Rising t
SDO guaranteed setup time to SCLK rising t
Notes: 16. Specified using 10% and 90% points on wave-form of interest. Output loaded with 50 pF.
17. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.
t
rise
t
fall
ost
t t
t
t
10
11
12
13
14
15
16
-
-
-
-
-
-
50
50
-
-
-
-
1.0
100
-
1.0
100
-
µs µs ns
µs µs ns
-60-ms
1
2
3
4
5
6
7
8
9
200 200
50 - - ns
50 - - ns
100 - - ns
-2050ns
-2050ns
-2050ns
-
-
8 8
-
-
ns ns
MCLK MCLK
50 ns
48 MCLK
100 8 MCLK
16 MCLK
50 ns
100 ns
10 DS661F1
CS
CS5461A
t
3
SCLK
SDI
CS
SDO
SCLK
SDI
MSB
MSB-1
t
1
t
2
t
4
LSB
MSB
MSB-1
t
5
LSB
MSB
MSB-1
LSB
MSB
MSB-1
Com m and Time 8 SCLKs High Byte Mid B yte Low Byte
SDI Write Timing (Not to Scale)
t
6
UNKNOW N
t
1
MSB
MSB-1
Com m and T ime 8 SC LKs
t
2
LSB
High Byte Mid Byte Low Byte
MSB
MSB-1
t
7
SYNC0 or SYNC1
Com m and
LSB
MSB
MSB-1
SYNC0 or SYNC1
Com m and
LSB
MSB
MSB-1
SYNC0 or SYNC1
Com m and
LSB
t
8
LSB
MODE
(INPUT)
RESET
(INPUT)
CS
(O UT P U T)
SCLK
(O UT P U T)
SDO
(O UT P U T)
SDI
(INPUT)
SDO Read Timing (Not to Scale)
t
11
t
12
t
t
13
t
10
7
t
16
t
9
t
4
t
5
D a ta fro m EE P R O M
STOP bit
Last 8
Bits
t
15
t
14
Auto-Boot Sequence Timing (Not to Scale)
Figure 1. CS5461A Read and Write Timing Diagrams
DS661F1 11

ABSOLUTE MAXIMUM RATINGS

WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes
Parameter Symbol Min Typ Max Unit
DC Power Supplies (Notes 18 and 19)
Positive Digital
Positive Analog
Input Current, Any Pin Except Supplies (Notes 20, 21, 22) I
Output Current, Any Pin Except VREFOUT I
Power Dissipation (Note 23) P
Analog Input Voltage All Analog Pins V
Digital Input Voltage All Digital Pins V
Ambient Operating Temperature T
Storage Temperature T
Notes: 18. VA+ and AGND must satisfy {(VA+) - (AGND)} + 6.0 V.
19. VD+ and AGND must satisfy {(VD+) - (AGND)}
20. Applies to all pins including continuous over-voltage conditions at the analog input pins.
21. Transient current of up to 100 mA will not cause SCR latch-up.
22. Maximum DC input current for a power supply pin is ±50 mA.
23. Total power dissipation, including all input currents and output currents.
+ 6.0 V.
.
VD+
VA+
IN
OUT
D --500mW
INA
IND
A
stg
-0.3
-0.3
-
-
--±10mA
--100mA
- 0.3 - (VA+) + 0.3 V
-0.3 - (VD+) + 0.3 V
-40 - 85 °C
-65 - 150 °C
CS5461A
+6.0 +6.0
V V
12 DS661F1
VOLTAGE
x10
2nd Order
∆Σ
Modulator
DELAY
REG
Digital Filter
3
SINC
CS5461A
V*
V
*
gn
DCoff
+
+
HPF
IIR
X
Option
Σ
*
V
X
N
X
Σ
÷
N
V
*
ACoff
+
+
Σ
V*
RMS
6
*
CURRENT
PGA
4th Order
Modulator
*
DENOTES REGISTER NAME.
PC6 PC5 PC4 PC3
Configuration Register *
∆Σ
SINC
PC2
PC1 PC0
3
DELAY
REG
Digital Filter
SYS
Gain
IIR
X
Figure 2. Data Flow.

4. THEORY OF OPERATION

The CS5461A is a dual-channel analog-to-digital con­verter (ADC) followed by a computation engine that per­forms power calculations and energy-to-pulse conversion. The flow diagram for the two data paths is depicted in Figure 2. The analog inputs are structured with two dedicated channels, voltage and current, then optimized to simplify interfacing to sensing elements.
The voltage-sensing element introduces a voltage waveform on the voltage channel input VIN± and is sub­ject to a gain of 10x. A second-order, delta-sigma mod­ulator samples the amplified signal for digitization.
Simultaneously, the current-sensing element introduces a voltage waveform on the current channel input IIN± and is subject to the two selectable gains of the pro­grammable gain amplifier (PGA). The amplified signal is sampled by a fourth-order, delta-sigma modulator for digitization. Both converters sample at a rate of MCLK/8, the over-sampling provides a wide dynamic range and simplified anti-alias filter design.

4.1 Digital Filters

The decimating digital filters on both channels are Sinc filters followed by 4th-order, IIR filters. The single-bit data is passed to the low-pass decimation filter and out­put at a fixed word rate. The output word is passed to the IIR filter to compensate for the magnitude roll-off of the low-pass filtering operation.
An optional digital High-pass Filter (HPF in Figure 2) re­moves any DC component from the selected signal path. By removing the DC component from the voltage and/or the current channel, any DC content will also be removed from the calculated active power as well. With both HPFs enabled, the DC component will be removed from the calculated V ent power.
RMS
and I
as well as the appar-
RMS
HPF
Option
*
P
PulseRateE
off
+
X
Σ
+
*
PulseRateE
P
+
I
Σ
DCoff
X
+
I*
*
gn
X
*
I
Σ
*
1,2
*
3
N
X
N
Σ
÷
N
Energy-to-pulseX
÷
Energy-to-pulse
P
Active
N
+
I
ACoff

4.2 Voltage and Current Measurements

The digital filter output word is then subject to a DC off­set adjustment and a gain calibration (See Section 7.
System Calibration on page 33). The calibrated mea-
surement is available to the user by reading the instan­taneous voltage and current registers.
The Root Mean Square (RMS) calculations are per­formed on N instantaneous voltage and current sam­ples, V
n and In respectively (where N is the cycle count),
using the formula:
N1
I
n0=
--------------------
N
n
RMS
and V
and likewise for V
I
RMS
, using Vn. I
RMS
=
cessible by register reads, which are updated once ev­ery cycle count (referred to as a computational cycle).
3

4.3 Power Measurements

The instantaneous voltage and current samples are multiplied to obtain the instantaneous power (see Fig-
ure 2). The product is then averaged over N conver-
sions to compute active power and used to drive energy pulse outputs E1 form pulse stream that is proportional to the active pow­er and is designed for system calibration.
To generate a value for the accumulated active energy over the last computation cycle, the active power can be multiplied by the time duration of the computation cycle.
, E2 and E3. Output E3 provides a uni-
E3
E1 E2
Σ
+
RMS
*
*
X
S
I*
RMS
are ac-
*
DS661F1 13
Loading...
+ 28 hidden pages