Cirrus Logic CS5461A User Manual

CS5461A
VA+ VD+
IIN+
IIN-
VIN+
VIN-
VREFIN
VREFOUT
AGND
XIN XOUT CPUCLK DGND
CS
SDO
SDI
SCLK INT
Voltage
Reference
System
Clock
/K
Clock
Generator
Serial
Interface
E-to-F
Power
Monitor
PFMON
x1
RESET
Digital
Filter
Calibration
MODE
Power
Calculation
Engine
4th Order 
Modulator
2nd Order 
Modulator
Temperature
Sensor
Digital
Filter
PGA
HPF
Option
HPF
Option
E1 E2 E3
x10
Single Phase, Bi-directional Power/Energy IC
Features
• Energy Data Linearity: ±0.1% of Reading over 1000:1 Dynamic Range
- Instantaneous Voltage, Current, and Power
- I
and V
RMS
- Energy-to-pulse Conversion for Mechanical Counter/Stepper Motor Drive
- System Calibrations and Phase Compensation
- Temperature Sensor
- Voltage Sag Detect
• Meets Accuracy Spec for IEC, ANSI, & JIS.
• Low Power Consumption
• Current Input Optimized for Sense Resistor.
• GND-referenced Signals with Single Supply
• On-chip 2.5 V Reference (25 ppm/°C typ)
• Power Supply Monitor
• Simple Three-wire Digital Serial Interface
• “Auto-boot” Mode from Serial E
• Power Supply Configurations:
VA+ = +5 V; AGND = 0 V; VD+ = +3.3 V to +5 V
, Apparent and Active (Real) Power
RMS
2
PROM.
Description
The CS5461A is an integrated power measure­ment device which combines two  analog-to-digital converters, power calculation engine, energy-to-frequency converter, and a serial interface on a single chip. It is designed to accurately measure instantaneous current and voltage, and calculate V neous power, apparent power, and active power for single-phase, 2- or 3-wire power metering applications.
The CS5461A is optimized to interface to shunt resistors or current transformers for current mea­surement, and to resistive dividers or potential transformers for voltage measurement.
The CS5461A features a bi-directional serial in­terface for communication with a processo r, an d a programmable energy-to-pulse output func­tion. Additional features include on-chip functionality to facilitate system-level calibration, temperature sensor, voltage sag detection, and phase compensation.
ORDERING INFORMATION:
See Page 43.
RMS
, I
, instanta-
RMS
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved)
APR ‘11
DS661F3
CS5461A

TABLE OF CONTENTS

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3. Characteristics & Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.1 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.2 Voltage and Current Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.3 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.4 Linearity Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1.1 Voltage Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1.2 Current Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.2 High-pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.3 Performing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.4 Energy Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.4.1 Normal Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.4.2 Alternate Pulse Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.4.3 Mechanical Counter Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.4.4 Stepper Motor Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.4.5 Pulse Output E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.4.6 Anti-creep for the Pulse Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.4.7 Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.5 Voltage Sag-detect Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.6 No Load Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.7 On-chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.8 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.9 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.10 Power-down States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.12 Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.12.1 Typical Interrupt Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.13 Serial Port Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5.13.1 Serial Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5.14 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
6. Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6.1 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6.2 Current and Voltage DC Offset Register ( I
DCoff ,VDCoff
) . . . . . . . . . . . . . . . . . . . .27
2 DS661F3
CS5461A
6.3 Current and Voltage Gain Register ( Ign ,V
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
gn
6.4 Cycle Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
6.5 PulseRateE
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1,2
6.6 Instantaneous Current, Voltage and Power Registers ( I , V , P ) . . . . . . . . . . . . . .28
6.7 Active (Real) Power Registers ( P
6.8 I
6.9 Power Offset Register ( P
RMS
and V
Registers ( I
RMS
, V
RMS
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
off
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Active
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
RMS
6.10 Status Register and Mask Register ( Status , Mask ) . . . . . . . . . . . . . . . . . . . . . .29
6.11 Current and Voltage AC Offset Register ( V
ACoff
, I
) . . . . . . . . . . . . . . . . . . .30
ACoff
6.12 PulseRateE3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
6.13 Temperature Register ( T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
6.14 System Gain Register ( SYSGain ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
6.15 Pulsewidth Register ( PW ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
6.16 E3 Pulse Width Register ( PulseWidth ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
6.17 Voltage Sag Duration Register ( VSAG
6.18 Voltage Sag Level Register ( VSAG
Level
Duration
) . . . . . . . . . . . . . . . . . . . . . . . . . .31
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
6.19 No Load Threshold Interval Register ( LoadIntv) . . . . . . . . . . . . . . . . . . . . . . . . . .32
6.20 No Load Threshold ( LoadMin ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
6.21 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
6.22 Temperature Gain Register ( T
6.23 Temperature Offset Register ( T
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Gain
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
off
6.24 Apparent Power Register ( S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
7. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1 Channel Offset and Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1.1 Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1.1.1 Duration of Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1.2 Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1.2.1 DC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.1.2.2 AC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.1.3 Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.1.3.1 AC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.1.3.2 DC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7.1.4 Order of Calibration Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7.2 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7.3 Active Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
8. Auto-boot Mode Using E2PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
8.1 Auto-Boot Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2
8.2 Auto-Boot Data for E
8.3 Suggested E
2
PROM Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
9. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
10. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
12. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . . . . . . .43
13. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
DS661F3 3
CS5461A

LIST OF FIGURES

Figure 1. CS5461A Read and Write Timing Diagrams ........................................................................... 11
Figure 2. Data Flow.................................................................................................................................13
Figure 3. Normal Format on pulse outputs E1 Figure 4. Alternate Pulse Format on E1 Figure 5. Mechanical Counter Format on E1 Figure 6. Stepper Motor Format on E1
Figure 7. Voltage Sag Detect..................................................................................................................19
Figure 8. Oscillator Connection...............................................................................................................20
Figure 9. Calibration Data Flow...............................................................................................................35
Figure 10. System Calibration of Offset..................................................................................................35
Figure 11. System Calibration of Gain ....................................................................................................36
Figure 12. Example of AC Gain Calibration............................................................................................36
Figure 13. Another Example of AC Gain Calibration ..............................................................................36
Figure 14. Typical Interface of E
Figure 15. Typical Connection Diagram (Single-phase, 2-wire – Direct Connect to Power Line)........... 39
Figure 17. Typical Connection Diagram (Single-phase, 3-wire)..............................................................40
Figure 16. Typical Connection Diagram (Single-phase, 2-wire – Isolated from Power Line)..................40
Figure 18. Typical Connection Diagram (Single-phase, 3-wire – No Neutral Available)......................... 41
and E2.......................................................................................18
2
PROM to CS5461A ............................................................................38
and E2 ............................................................................ 16
and E2.....................................................................................17
and E2..............................................................................17

LIST OF TABLES

Table 1. Current Channel PGA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2. E1
Table 3. Interrupt Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 DS661F3
and E2 Pulse Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CS5461A

1. OVERVIEW

The CS5461A is a CMOS monolithic power measurement device with a computation engine and an en­ergy-to-frequency pulse output. The CS5461A combines a programmable-gain amplifier, two  ana­log-to-digital converters (ADCs), system calibration and a computation engine on a single chip.
The CS5461A is designed for power measurement applications and is optimized to interface to a cur­rent-sense resistor or transformer for current measurement, and to a resistive divider or potential trans­former for voltage measurement. The voltage and current channels provide programmable gains to accommodate various input levels from a wide variety of sensing elements. With single +5 V supply on VA+/AGND, both of the CS5461A’s input channels can accommodate common mode as well as signal levels between (AGND - 0.25 V) and VA+.
Additionally, the CS5461A is equipped with a computation engine that calculates I power and active (real) power. To facilitate communication to a microprocessor, the CS5461A includes a simple three-wire serial interface which is SPI™ and Microwire™ compatible. The CS5461A provides three outputs for energy registration. E1 stepper motor, or interface to a microprocessor. The pulse output E3 ibration.
and E2 are designed to directly drive a mechanical counter or
is designed to assist with meter cal-
RMS
, V
, apparent
RMS
DS661F3 5
CS5461A
VREFIN 12Voltage Reference Input
VREFOUT 11Voltage Reference Output
VIN- 10Differential Voltage Input
VIN+ 9Differential Voltage Input
MODE 8Mode Select
CS 7Chip S e le c t
SDO 6Serial D a ta Ouput
SCLK 5Serial Clock
DGND 4Digital Ground
VD+ 3Positiv e Digital Supply
CPUCLK 2CPU Clock Output
XOUT 1Crystal Out
AGND13 Analog Ground
VA+14 Positive Analog Supply
IIN-15 Differential Current Input
IIN+16 Differential Current Input
PFMON17 Power Fail Monito r
E318 High Frequency Energ y O utput
RESET19 Reset
INT20 Interr up t
E121 Energy Output 1
22
SDI23 Serial Data Input
XIN24 Crystal In
E2
Energy Output 2

2. PIN DESCRIPTION

Clock Generator
Crystal Out Crystal In
CPU Clock Output 2
Control Pins and Serial Data I/O
Serial Clock Input 5
Serial Data Output 6 Chip Select 7 Mode Select 8 High Frequency Energy
Output Reset 19
Interrupt 20 Energy Output 21,22
Serial Data Input 23
Analog Inputs/Outputs
Differential V ol tage Inputs 9,10 Differential Current Inputs 15,16 Voltag e Reference Output 11
Voltage Reference Input 12
Power Supply Connections
Positive Digital Supply 3 Digital Ground 4 Positive Analog Supply 14 Analog Ground 13 Power Fail Monitor
6 DS661F3
XOUT, XIN - The output and input of an inverting amplifier. Oscillation occurs when connected to
1,24
a crystal, providing an on-chip system clock. Alternatively, an external clock can be supplied to the XIN pin to provide the system clock for the device.
CPUCLK - Output of on-chip oscillator which can drive one standard CMOS load.
SCLK - A Schmitt Trigger input pin. Clocks data from the SDI pin into the receive buffer and out of
the transmit buffer onto the SDO pin when CS
SDO -Serial port data output pin.SDO is forced into a high impedance state when CS is high. CS - Low, activates the serial port interface. MODE - High, enables the “auto-boot” mode. The mode pin is pulled low by an internal resistor.
18
E3 - Active low pulses with an output frequency proportional to the active power. Used to assist
in system calibration. RESET - A Schmitt Trigger input pin. Low activates Reset, all internal registers (some of which
drive output pins) are set to their default states. INT - Low, indicates that an enabled event has occurred.
is low.
E1, E2 - Active low pulses with an output frequency proportional to the active power. Indicates if
the measured energy is negative.
SDI - Serial port data input pin. Data will be input at a rate determined by SCLK.
VIN+, VIN- - Differential analog input pins for the voltage channel. IIN+, IIN- - Differential analog input pins for the current channel. VREFOUT - The on-chip voltage reference output. The voltage reference has a nominal magni-
tude of 2.5 V and is referenced to the AGND pin on the converter.
VREFIN - The input to this pin establishes the voltage reference for the on-chip modulator.
VD+ - The positive digital supply. DGND - Digital Ground. VA+ - The positive analog supply. AGND - Analog ground. PFMON - The power fail monitor pin monitors the analog supply. If PFMON’s voltage threshold is
17
not met, a Low-Supply Detect (LSD) bit is set in the status register.
CS5461A

3. CHARACTERISTICS & SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Typ Max Unit
Positive Digital Power Supply VD+ 3.135 5.0 5.25 V Positive Analog Power Supply VA+ 4.75 5.0 5.25 V Voltage Reference VREFIN - 2.5 - V Specified Temperature Range T
A

ANALOG CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = VD+ = 5 V ±5%; AGND = DGND = 0 V; VREFIN = +2.5 V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
Parameter Symbol Min Typ Max Unit
Linearity Performance
Active Power Accuracy (All Gain Ranges) (Note 1) Input Range 0.1% - 100%
Current RMS Accuracy (All Gain Ranges) (Note 1) Input Range 0.2% - 100%
Input Range 0.1% - 0.2%
Voltage RMS Accuracy (All Gain Ranges) (Note 1) Input Range 5% - 100%
Analog Inputs (Both Channels)
Common Mode Rejection (DC, 50, 60 Hz) CMRR 80 - - dB Common Mode + Signal (All Gain Ranges) -0.25 - VA+ V
Analog Inputs (Current Channel)
Differential Input Range (Gain = 10) [(IIN+) - (IIN-)] (Gain = 50)
Total Harmonic Distortion (Gain = 50) THD 80 94 - dB Crosstalk with Voltage Channel at Full Scale (50, 60 Hz) - -115 - dB Input Capacitance (Gain = 10)
(Gain = 50) Effective Input Impedance EII 30 - - k Noise (Referred to Input) (Gain = 10)
(Gain = 50) Offset Drift (Without the high-pass filter) OD - 4.0 - µV/°C
Gain Error (Note 2) GE - ±0.4 %
Analog Inputs (Voltage Channel)
Differential Input Range {(VIN+) - (VIN-)} Total Harmonic Distortion THD 65 75 - dB
Crosstalk with Current Channel at Full Scale (50, 60 Hz) - -70 - dB Input Capacitance All Gain Ranges IC - 0.2 - pF Effective Input Impedance EII 2 - - M Noise (Referred to Input) N
Offset Drift (Without the high-pass Filter) OD - 16.0 - µV/°C Gain Error (Note 2) GE - ±3.0 %
P
Active
I
RMS
V
IIN
VIN
RMS
IC
N
I
V
-40 - +85 °C
0.1-%
-
-
±0.2 ±1.5
-
-
% %
0.1-%
-
-
-
-
-
-
-500-mV
-140-µV
500 100
32 52
22.5
4.5
-
-
-
-
-
-
mV mV
µV µV
P-P P-P
pF pF
rms rms
P-P
rms
DS661F3 7
CS5461A
PSRR 20
150
V
eq
--------- -



log=
(VREFOUTMAX - VREFOUTMIN)
VREFOUT
AVG
(
(
1
T
A
MAX
- T
A
MIN
(
(
1.0 x 10
(
(
6
TC
VREF
=
ANALOG CHARACTERISTICS (Continued)
Parameter Symbol Min Typ Max Unit
Temperature Channel
Temperature Accuracy T - ±5 - °C
Power Supplies
Power Supply Currents (Active State) I
I
(VA+ = VD+ = 5 V)
D+
I
(VA+ = 5 V, VD+ = 3.3 V)
D+
A+
PSCA PSCD PSCD
Power Consumption Active State (VA+ = VD+ = 5 V) (Note 3) Active State (VA+ = 5 V, VD+ = 3.3 V)
Stand-By State
PC
Sleep State
Power Supply Rejection Ratio (DC, 50 and 60 Hz) (Note 4) Voltage Channel
Current Channel
PSRR
PFMON Low-voltage Tr igger Threshold (Note 5) PMLO 2.3 2.45 - V PFMON High-voltage Power-On Trip Point (Note 6) PMHI - 2.55 2.7 V
1. Applies when the HPF option is enabled.
2. Applies before system calibration.
3. All outputs unloaded. All inputs CMOS level.
4. Measurement method for PSRR: VREFIN tied to VREFOUT, VA+ = VD+ = 5 V, a 150 mV (zero-to-peak) (60 Hz) sinewave is imposed onto the +5 V DC supply voltage at VA+ and VD+ pins. The “+” and “-” input pins of both input channels are shorted to AGND. Then the CS5461A is commanded to continuous conversion acquisition mode, and digital output data is collected for the channel under test. The (zero-to-peak) value of the digital sinusoidal output signal is determined, and this value is converted into the (zero-to-peak) value of the sinusoidal voltage (measured in mV) that would need to be applied at the channel’s inputs, in order to cause the same digital sinusoidal output. This voltage is then defined as Veq. PSRR is then (in dB)
:
45 70
-
-
-
-
-
-
-
1.1
2.9
1.7 21
12
8
10
65 75
-
-
-
28
16.5
-
-
-
-
mA mA mA
mW mW mW
µW
dB dB
5. When voltage level on PFMON is sagging, and LSD bit is at 0, the voltage at which LSD bit is set to 1.
6. If the LSD bit has been set to 1 (because PFMON voltage fell below PMLO), this is the voltage level on PFMON at which the LSD bit can be permanently reset back to 0.

VOLTAGE REFERENCE

Parameter Symbol Min Typ Max Unit
Reference Output
Output Voltage VREFOUT +2.4 +2.5 +2.6 V Temperature Coefficient (Note 7) TC
Load Regulation (Note 8) V
Reference Input
VREF
R
Input Voltage Range VREFIN +2.4 +2.5 +2.6 V Input Capacitance - 4 - pF Input CVF Current - 25 - nA
Notes: 7. The voltage at VREFOUT is measured across the temperature range. From these measurements the follo wing
formula is used to calculate the VREFOUT Temperature Coefficient:.
8. Specified at maximum recommended output of 1 µA, source or sink.
- 25 60 ppm/°C
-610mV
8 DS661F3
CS5461A

DIGITAL CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply volt ages and TA = 25 °C.
VA+ = VD+ = 5V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
Parameter Symbol Min Typ Max Unit
Master Clock Characteristics
Master Clock Frequency Internal Gate Oscillator (Note 10) MCLK 2.5 4.096 20 MHz Master Clock Duty Cycle 40 - 60 % CPUCLK Duty Cycle (Note 11 and 12) 40 60 %
Filter Characteristics
Phase Compensation Range (Voltag e Channel, 60 Hz) -2.8 - +2.8 ° Input Sampling Rate DCLK = MCLK/K - DCLK/8 - Hz Digital Filter Output Word Rate (Both Channels) OWR - DCLK/1024 - Hz High-pass Filter Corner Frequency -3 dB - 0.5 - Hz Full Scale Calibration Range ( Channel-to-channel Time-shift Error (Note 14) 1.0 µs
Input/Output Characteristics
High-level Input Voltage
All Pins Except XIN and SCLK and RESET
Low-level Input Voltage (VD = 5 V)
All Pins Except XIN and SCLK and RESET
Low-level Input Voltage (VD = 3.3 V)
All Pins Except XIN and SCLK and RESET
High-level Output Voltage I Low-level Output Voltage I Input Leakage Current (Note 15) I 3-state Leakage Current I Digital Output Pin Capacitance C
Referred to Input) (Note 13) FSCR 25 - 100 %F.S.
XIN
SCLK and RESET
XIN
SCLK and RESET
XIN
SCLK and RESET
= +5 mA V
out
= -5 mA V
out
IH
0.6 VD+
(VD+) - 0.5
V
0.8VD+
V
IL
-
-
-
V
IL
-
-
-
(VD+) - 1.0 - - V
OH OL in
OZ
out
--0.4V
1±10µA
--±10µA
-5-pF
-
-
-
-
-
-
-
-
-
-
-
-
0.8
1.5
0.2VD+
0.48
0.3
0.2VD+
V V V
V V V
V V V
Notes: 9. All measurements performed under static conditions.
10. If a crystal is used, then XIN frequency must remain between 2.5 MHz - 5.0 MHz. If an external oscillator is used, XIN frequency range is 2.5 M Hz - 20 MHz, but K must be set so that MCLK is between 2.5 MHz - 5.0 MHz.
11. If external MCLK is used, then the duty cycl e must be between 45% and 55% to maintain this specific ation.
12. The frequency of CPUCLK is equal to MCLK.
13. The minimum FSCR is limited by the maximum allowed gain register value. The maximum FSCR is limited by the full-scale signal applied to the channel input.
14. Configuration Register bits PC[6:0] are set to “0000000”.
15. The MODE pin is pulled low by an internal resistor.
DS661F3 9
CS5461A

SWITCHING CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply volt ages and TA = 25 °C.
VA+ = 5 V ±5% VD+ = 3.3 V ±5% or 5 V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
Logic Levels: Logic 0 = 0 V, Logic 1 = VD+.
Parameter Symbol Min Typ Max Unit
Rise Times Any Digital Input Except SCLK (Note 16) SCLK
Any Digital Output
Fall Times Any Digital Input Except SCLK (Note 16) SCLK
Any Digital Output
Start-up
Oscillator Start-Up Time XTAL = 4.096 MHz (Note 17) t
Serial Port Timing
Serial Clock Frequency SCLK - - 2 MHz Serial Clock Pulse Width High
Pulse Width Low
SDI Timing
CS Falling to SCLK Rising t Data Set-up Time Prior to SCLK Rising t Data Hold Time After SCLK Rising t
SDO Timing
CS Falling to SDO Driving t SCLK Falling to New Data Bit (hold time) t
Rising to SDO Hi-Z t
CS
Auto-Boot Timing
Serial Clock Pulse Width Low
Pulse Width High
MODE setup time to RESET RESET CS SCLK falling to CS CS
rising to CS falling t
falling to SCLK rising t
rising t
rising to driving MODE low (to end auto-boot sequence). t
Rising t
SDO guaranteed setup time to SCLK rising t
Notes: 16. Specified using 10% and 90% points on wave-form of interest. Output loaded with 50 pF.
17. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.
t
rise
t
t
fall
ost
t t
t
10 11 12 13 14 15 16
-
-
-
-
-
-
50
50
-
-
-
-
1.0
100
-
1.0
100
-
µs µs ns
µs µs ns
-60-ms
1 2
3 4 5
6 7 8
9
200 200
50 - - ns 50 - - ns
100 - - ns
-2050ns
-2050ns
-2050ns
-
-
8 8
-
-
ns ns
MCLK MCLK
50 ns 48 MCLK
100 8 MCLK
16 MCLK
50 ns
100 ns
10 DS661F3
t
1
t
2
t
3
t
4
t
5
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
Com m and Time 8 S CLKs High Byte Mid Byte Low B yte
CS
SCLK
SDI
t
10
t
9
RESET
SDO
SCLK
CS
Last 8
Bits
SDI
MODE
STOP bit
D a ta fro m E E P R O M
t
16
t
4
t
5
t
14
t
15
t
7
t
13
t
12
t
11
(INPUT)
(INPUT)
(O UT P U T )
(O UT P U T )
(O UT P U T )
(INPUT)
SDI Write Timing (Not to Scale)
SDO Read Timing (Not to Scale)
Figure 1. CS5461A Read and Write Timing Diagrams
Auto-Boot Sequence Timing (Not to Scale)
t
1
t
2
MSB
MSB-1
LSB
Com m and Time 8 SC LKs
SYNC0 or SYNC1
Command
SYN C 0 or SYN C1
Command
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
H igh B y te M id B y te Lo w B y te
CS
SDO
SDI
t
6
t
7
t
8
SYN C 0 or SYN C1
Command
UNKNOWN
CS5461A
DS661F3 11

ABSOLUTE MAXIMUM RATINGS

WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes
Parameter Symbol Min Typ Max Unit
DC Power Supplies (Notes 18 and 19)
Positive Digital
Positive Analog
Input Current, Any Pin Except Supplies (Notes 20, 21, 22) I Output Current, Any Pin Except VREFOUT I Power Dissipation (Note 23) P
Analog Input Voltage All Analog Pins V Digital Input Voltage All Digital Pins V Ambient Operating Temperature T Storage Temperature T
Notes: 18. VA+ and AGND must satisfy {(VA+) - (AGND)} + 6.0 V.
19. VD+ and AGND must satisfy {(VD+) - (AGND)}
20. Applies to all pins including cont inuous over-voltage conditions at the analog input pins.
21. Transient current of up to 100 mA will not cause SCR latch-up.
22. Maximum DC input current for a power supply pin is ±50 mA.
23. Total power dissipation, including all input currents and output currents.
+ 6.0 V.
.
VD+ VA+
IN
OUT
D --500mW
INA IND
A
stg
-0.3
-0.3
-
-
--±10mA
--100mA
- 0.3 - (VA+) + 0.3 V
-0.3 - (VD+) + 0.3 V
-40 - 85 °C
-65 - 150 °C
CS5461A
+6.0 +6.0
V V
12 DS661F3

4. THEORY OF OPERATION

VOLTAGE
SINC
3
+
X
V*
gn
X
V
*
CURRENT
SINC
3
+
X
I*
gn
DELAY
REG
DELAY
REG
HPF
Option
X
I*
RMS
V*
RMS
E1
IIR
I
*
I
DCoff
*
V
DCoff
*
PGA
IIR
X
+
+
Energy-to-pulseX
E3
+
X
+
Configuration Register *
Digital Filter
Digital Filter
HPF
Option
X
S
*
2nd Order

Modulator
4th Order

Modulator
x10
+
I
ACoff
*
+
+
V
ACoff
*
+
E2
N
÷
N
N
÷
N
P
*
Active
N
÷
N
P
off
*
P
*
X
X
SYS
Gain
*
PC6 PC5 PC4 PC3
PC2
PC1 PC0
6
PulseRateE
1,2
*
PulseRateE
3
*
Energy-to-pulse
*
DENOTES REGISTER NAME.
APF
Option
APF
Option
Figure 2. Data Flow.
I
RMS
I
n
n0=
N1
N
--------------------
=
The CS5461A is a dual-channel analog-to-digital con­verter (ADC) followed by a computation engine that per­forms power calculations and energy-to-pulse conversion. The flow diagram for the tw o data paths is depicted in Figure 2. The analog inputs are structured with two dedicated channels, voltage and current, then optimized to simplify interfacing to sensing elements.
The voltage-sensing element introduces a voltage waveform on the voltage channel input VIN± and is sub­ject to a gain of 10x. A second-order, delta-sigma mod­ulator samples the amplified signal for digitization.
Simultaneously, the current-sensing element introduces a voltage waveform on the current channel input IIN± and is subject to the two selectable gains of the pro­grammable gain amplifier (PGA). The amplified signal is sampled by a fourth-order, delta-sigma modulator for digitization. Both converters sample at a rate of MCLK /8, the over-sampling provides a wide dynamic range and simplified anti-alias filter design.
CS5461A
When the HPF option is used in only one channel, the APF (all pass filter) option can be applied to the other channel to preserve the phase match between the two channels.

4.2 Voltage and Current Measurements

The digital filter output word is then subject to a DC off­set adjustment and a gain calibration (See Section 7.
System Calibration on page 35). The calibrated me a-
surement is available to the user by reading the instan­taneous voltage and current registers.
The Root Mean Square (RMS) calculations are per­formed on N instantaneous voltage and current sam­ples, V
n and In respectively (where N is the cycle count),
using the formula:

4.1 Digital Filters

The decimating digital filters on both channels a re Sinc filters followed by 4th-order, IIR filters. The single-bit data is passed to the low-pass decimation filter and out­put at a fixed word rate. The o utput word is passed to the IIR filter to compensate for the magnitude roll-off of the low-pass filtering operation.
An optional digital High-pass Filter (HPF in Figure 2) re­moves any DC component from the selected signal path. By removing the DC component from the voltage and/or the current channel, any DC content will also be removed from the calculated active power as well. With both HPFs enabled, the DC component will be removed from the calculated V ent power.
DS661F3 13
RMS
and I
as well as the appar-
RMS
3
and likewise for V
, using Vn. I
RMS
RMS
and V
RMS
cessible by register reads, which are updated once ev­ery cycle count (referred to as a computational cycle).

4.3 Power Measurements

The instantaneous voltage and current samples are multiplied to obtain the instantaneous power (see Fig-
ure 2). The product is then averaged over N conver-
provides a uni-
sions to compute active power and used to drive energy pulse outputs E1, E2 and E3. Output E3 form pulse stream that is proportional to the active pow­er and is designed for system calibration.
are ac-
CS5461A
SV
RMSIRMS
=
To generate a value for the accumulated active energy over the last computation cycle, the active power can be multiplied by the time duration of the computation cycle.
The apparent power is the combination of the active power and reactive power, without reference to an im­pedance phase angle, and is calculated by the CS5461A using the following formula:
The apparent power is registered on ce eve ry co mpu ta­tion cycle.

4.4 Linearity Performance

The linearity of the V surements (before calibration) will be within ±0.1% of
RMS
, I
, and active power mea-
RMS
reading over the ranges specified, with respect to the in­put voltage levels required to cause full-scale readings in the I
RMS
and V
registers. Refer to Linearity Per-
RMS
formance Specifications on page 7.
Until the CS5461A is calibrated, the accuracy of the CS5461A (with respect to a reference line-voltage and line-current level on the power mains) is not guaranteed to within ±0.1%. See Section 7. System Calibration on page 35. The accuracy of the internal calculations can often be improved by selecting a value for the Cycle Count Register that will cause the time duration of one computation cycle to be equal to (or very close to) a whole-number of power-line cycles (and N must be greater than or equal to 4000).
14 DS661F3
Loading...
+ 30 hidden pages