This activities book introduces practical examples of problems and
exercises that are covered in middle school, high school, and college
classes using the CASIO Programmable Scientific Calculator .
As you will see as you go through the problems and exercises,
using a programmable scientific calculator does much more than
take the work out of calculations. It is also a highly effective
educational tool that can help students grasp important concepts
and stimulate their imagination.
This manual is a collection of actual problems and exercises,
including actual operations. It is intended as the first step for
educators who want to start using the programmable scientific
calculator in their own classrooms. The material presented here is
designed to make problem solving more enjoyable and to cultivate
a deeper understanding of mathematics by showing how the
programmable scientific calculator can be used to solve a blend of
textbook problems and problems faced in everyday life.
関数電卓事例集表
23.eps
Table of Contents
Programming a Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
01 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
02 Fractions from recurring decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
03 Simultaneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
04 Solutions to quadratic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
05 Values of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
06 Summing Arithmetic Progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
07 Summing Geometric Progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
08 Approximate solutions to higher order equations(bisection method) . . . . . . . . . . . . 14
09 Approximate solutions to Equations of higher degree (Newton’s method) . . . . . . . 16
10 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12 Definite Integrals(Trapezoidal rule) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13 Definite integrals(Simpsons formula) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
14 Finding the area of a triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
15 The angle between two vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
16 Finding the angles in a triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
17 The radius of the Inscribed circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
18 The radius of the Circumscribed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
19 Center of mass of a triangle(barycentre) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
20 The distance between a line and a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
21 The sum, difference and inner product of two vectors . . . . . . . . . . . . . . . . . . . . . . . 30
22 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
23 Complex numbers and polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
24 The inverse of a 2
25 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
26 The binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
×2 matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
27 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
28 Test on a mean with known (z-tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
29 Guess the number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
30 Various areas and volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
µσ
2
1
Basic Operation for fx-3650P/3950P
Programming a Calculation
• The program storage area has about 360 bytes, which can be
divided among up to four different programs named P1, P2, P3,
and P4.
• To perform program calculation operations, press ,
MODE MODE MODE
which displays the screen shown below. Next, press the number
key that corresponds to the mode you want to select.
P
RGM RUN PCL
1
2
1
(PRGM) . . Edit Prog Mode for inputting and editing programs.
2
(RUN) . . . Mode for running programs.
3
(PCL) . . . . Clear Prog Mode for deleting programs.
Storing a Program
3
PRGM
Use the following procedure to specify the Edit Prog Mode and
store a program in memory.
Edit Prog. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MODE MODE MODE
1
• Example: To create a program that uses Heron’s formula to cal-
culate the area of a triangle based on the lengths of its three
sides
Formula: Note that: s = (A + B + C) /2.
Ss sA – () sB – () sC – () =
1. Enter the Edit Prog Mode, which displays the screen shown
below.
If there is already a
program in memory, its
PRGM
Ed i t P r o
g
number appears on the
display.
P-1234 308
Remaining capacity (bytes)
2. Select the program number (P1 to P4) to which you want to
assign the program.
2
Ex.: (Program P2)
PRGM
000
Number of bytes used by program P2.
3. Input the program.
Program
▲
? → A: ? → B: ? → C: (A + B + C) ÷ 2 → D
D × (D – A) × (D
– B) × (D – C):
√ Ans
• To input a colon (:), press .
• To input → A”, press .
• You can also input a variable name using the key. To input
“X” for example, press .
SHIFT
ALPHA
EXE
STO
A
ALPHA
X
• To input a question mark (?), right arrow ( → ), colon (:), or out-
▲
put command (
1
keys through to select the mark or command you
want. See “Useful Program Commands” on page 40 for more
), press , and then use number
SHIFT SHIFT
4
P-CMD
information.
4. Press to exit program input.
AC
MODE MODE MODE
2
■ Editing a Program
• While a program’s contents are on the display in the Edit Prog
Mode, you can use and to move the cursor to the location you want to edit.
• Press to delete the function at the current cursor location.
DEL
• Use the insert cursor (page 9) when you want to insert a new
statement into a program.
Executing a Program
RUN
The procedure in this section shows how to execute a program in
the COMP Mode.
Perform the following key operation to enter the COMP Mode.
2 1
COMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MODE
• Example: To create a program that uses Heron’s formula to cal-
culate the area of a triangle whose three sides measure A = 30,
B = 40, C = 50
1. Execute the program.
(In the COMP Mode)
Prog
2
Specify the number of the program you want to execute.
2
PRGM PCL RUN
2. Input the values required for the calculation.
EXE
A? 30
EXE
B? 40
EXE
C? 50
3. Press to resume program execution.
EXE
(A+B+C) 2 D
60.
The program number disappears after
program execution is complete.
(Assigns the result of
D = (A + B + C) 2 to
Disp
variable D.)
Ans
600.
Deleting a Program
(Area)
PCL
Use the following procedure to specify the Clear Prog Mode and
delete a program from memory.
Clear Prog . . . . . . . . . . . . . . . . . . . . . . . . . . .
MODE MODE MODE
• You can also enter the Clear Prog Mode by pressing while
3
DEL
the Edit Prog screen is on the display.
• You can select programs individually by specifying a program
number from P1 through P4.
1. Enter the Clear Prog Mode, which displays the screen shown
below.
PRGM
C
l ea r Pr
P-1234 247
g
o
2. Select the program number (P1 to P4) of the program you want
to delete.
• Example: (Program P1)
1
• The number of the program you selected disappears from the
upper part of the display, and remaining memory capacity
increases by the size of the deleted program.
• Note that the only way to delete all the programs in memory (P1
through P4) is to perform the reset operation (page 11).
Useful Program Commands
In addition to mathematical calculations, there are also a number of
useful program commands you can use to perform loops and
define conditions.
■ Program Command Menus
Press to display a menu of available program com-
SHIFT
P-CMD
mands.
• The program command menu has three screens. Use the
and keys to display the menu screen you want.
• To input one of the commands currently on the screen, press a
number key from through
1
5
• Basic Commands
? :
1 2 3 4
1
(?) . . . . . Operator input command
2
( → ) . . . Assign to variable command
3
(:) . . . . . Multi-statement separator code
4
▲
) . . .Output command
(
• Conditional Jump Commands
1 2 3 4 5
1
( ⇒ ) . . .Jump code (when condition is met)
2
( = ) . . .Relational operator
3
( ≠ ) . . .Relational operator
4
( > ) . . .Relational operator
5
( ≧ ) . . .Relational operator
• Unconditional Jump Commands
G
o t o Lb l
1 2
(Goto) . . Jump command
1
(Lbl). . . .Label
2
01 Greatest Common Divisors
Given two natural numbers, and , the greatest common divisor may be found using
AB
Euclid’s algorithm. A simplified explanation is given below:
1.Let and be two natural numbers.
2.Let be the remainder after dividing by .
3.If , set and and return to 2.
4.If =
AB A B> ()
CA B
C 0≠ BA→ CB→
0 , then is the greatest common divisor.
CB
Greatest common divisor
Pr og r a m
ON
MODE MODE MODE
PRGM
1
MODE
COMP 1P1
1
Lbl 1:?→ A:?→ B:B > A ⇒ Goto 1:Lbl 2:A - B → A:A ≧ B
⇒ Goto 2:A =0⇒ Goto 3:A → C:B → A:C → B:Goto 2:Lbl
3:B < 60 STEP >
Ex ecution Example:
Find the greatest common divisor of 210 and 60.
Prog
210
60
1
EXE
EXE
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
G
G
G
3
02
Fractions from recurring decimals
Recurring decimals may be converted to fraction by proceeding in the following way:
1
= 0.111111111111 = 0.01010101010
---
……
9
1
---------
= 0.001001001001001 = 0.000100010001
……
999
1
------
99
1
-----------9999
……
……
For example, 0.345345345…… is
0.345345345
……
=
345
--------999
=
115
--------333
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:10^ A -1→ A:A → X:B → Y:Lbl 1:A - B → A:A ≧
B ⇒ Goto 1:A =0⇒ Goto 2:A → C:B → A:C → B:Goto 1:Lbl
2:Y ÷ B X÷B <73 STEP >
Ex ecution Example:
COMP 1P1
1
Write 0.345345••• as a fraction.
A? : The number of digits in the repeated pattern (e.g. 3 in the example)
B? : The recurring sequence of digits (e.g. 345 in the example)
Prog
3
1
EXE
3 4 5
EXE
EXE
S A
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
G
G
G
Disp
G
*This program deals only with the case in which the 1st to Ath digits immediately following
the decimal point are repeated.
4
i.e. 0.033333...= 1/30 and 0.166666...= 1/6 cannot be converted.
03 Simultaneous Equations
When , the solution to the simultaneous equation:
AE BD – G 0
Ax By +C =
=
≠
Dx Ey +F =
is given by the formula:
x
EC FB –
--------------------- =y ,
G
AF CD –
---------------------- =
G
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
Lbl 1:?→ A:?→ B:?→ C:A → Y:B → X:C → M:?→ A:?→ B:?→
C:AX - BY → D:D =0⇒ Goto 1:(XC - BM)÷ D → X:(AM - CY)÷
D→Y:X Y < 81 STEP >
INPUT A,B,C (first time): A,B,C (second time):
Ax By +C =D x E y +F =
COMP 1P1
1
OUTPUT X,Y: solutions to the simultaneous equation
Ex ecution Example:
3xy + 9=
The solution to is
Prog
3
1
1
EXE
EXE
8x 5y –1=
x 2 y , 3 ==
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
G
G
G
5
S A
EXE
9
M
P1P1P2 P3 P4
D R
G
8
1
EXE
S A
S A
S A
S A
M
M
M
M
EXE
EXE
5
EXE
When , we cannot guarantee that there is a unique solution. In this case
AE BD–0 =
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
G
G
G
G
please enter a different problem.
Disp
6
04
Solutions to quadratic equations
The solutions to the quadratic equation are given by the formula:
x
b – b
-------------------------------------- =
2
4ac –±
ax
2
bx c ++ 0=
2a
In particular, when two real solutions exist,
when
when there are two complex solutions
b24ac–0 >
b24ac–0
= there is just one real solution and
b24ac–0 <
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:?→ C:B2-4 AC =0⇒ Goto 1:(- B -√(B2-4 AC))
÷2 A → M:M Lbl 1:(-B+√(B
2
-4 AC))÷2 A → M:M < 70 STEP >
Ex ecution Example:
CMPLX
2
P1
1
i) Find solutions to the equation .
EXE
4
1 6
1
EXE
EXE
Prog
2
EXE
2x
2
4x –1 6 –0=x24 , –= ()
S A
S A
S A
S A
M CMPLX
S A
M CMPLX
CMPLX
CMPLX
CMPLX
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
D R
G
G
G
G
Disp
G
7
ii) Find solutions to the equation .
2
x
6 x–12 + 0 =x33 i± = ()
Prog
1
1 2
1
EXE
EXE
SHIHT EXE
EXE
SHIHT EXE
S A
S A
EXE
6
M CMPLX
S A
M CMPLX
S A
M CMPLX
S A
M CMPLX
CMPLX
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
D R
G
G
G
G
G
RI <>
Disp
RI <>
Disp
i
RI <>
RI <>
ii
When R ⇔ I appears in the display, the solution is complex.
Press to display the imaginary parts.
SHIHT EXE
8
05 Values of Functions
For two variables and where the values of is
determined for given values of , we say that is a
function of . For example, for the function
yx32x
y 3 – =x1 – =
– x 1 ++=y 13 =x3 =
when .
xy y
xy
x
2
, when , and
y
1
x
1
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:?→ C:?→ D:Lbl 1:?→ X:AX3+BX2+CX+D→Y:
Y Goto 1 < 42 STEP >
INPUT A,B,C,D: X : value of
OUTPUT Y : value of
Ax3Bx
yA x3Bx2Cx D +++ =
2
Cx D +++ x
Ex ecution Example:
COMP 1P1
1
Calculate values of , given , for the function .
Prog
1
1
3
1
EXE
EXE
EXE
EXE
yx y x
EXE
2
EXE
1
EXE
1
3
S A
S A
S A
S A
2
2x
– x 1 ++=
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
G
G
G
Disp
G
Disp
To continue the calculation, press , enter some value of X and .
To end the calculation, presss .
EXE EXE
AC
9
06
Summing Arithmetic Progressions
1. The sum up to the th term of an arithmetic progression with first term and
difference term , may be calculated by:
C
Ak1 – () B + ()
∑
k 1 =
CA
B
AAB + () A 2 B + ()…AC1 – () B + () ++ + + =
C
---- 2 AC1 – () B + () =
2
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:?→ C:C(2 A +(C -1)B)÷2→ D:D < 30 STEP >
OUTPUT D : sum of arithmetical progression
Ex ecution Example:
COMP 1P1
1
Calculate the sum up to the 10th term of the arithmetic progression with first term 1 and
difference term 3.
1+4+7+・・・+28=145
Prog
1
3
1 0
EXE
EXE
1
EXE
S A
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
G
G
G
G
10
2. The sum of an arithmetic progression with first term
terms is given by
BA –
AA
------------- +
C 1 –
…
B ++ +
C terms
Pr og r a m
A
and final term B, consisting of
C
ON
MODE MODE MODE
PRGM
1
MODE
COMP 1P1
1
?→ A:?→ B:?→ C:(A + B)C ÷2→ D:D < 24 STEP >
OUTPUT D : sum of arithmetical progression
Ex ecution Example:
The of an arithmetic progression of 10th terms, with first term 1 and last term 28, is:
1+4+7+・・・+28=145
Prog
1
EXE
1
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
G
G
2 8
1 0
EXE
EXE
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
G
G
11
07
Summing Geometric Progressions
1. The sum up to the th term of the geometric progression with first term and ratio
term may be calculated:
B
C
∑
k 1 =
AB
k 1 –
CA
AA BA B
++ ++ =
A 1 B
------------------------ =
2
– ()
…
n
AB
C 1 –
1 B –
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:?→ C:A(1- B ^ C)÷(1- B)→ D:D < 30 STEP >
OUTPUT D : sum of geometric progression
Ex ecution Example:
COMP 1P1
1
Calculate the sum up to the 5th term of the geometric progression with first term 1 and ratio
term 3.
1+3+9+27+81=121
Prog
1
3
5
EXE
EXE
EXE
1
S A
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
D R
G
G
G
G
12
2. The sum of a geometric progression with first term , last term and common ratio
AB C
is:
AA CA C
2
…
BC⁄ B ++ ++ +
AB C –
----------------- =
1 C –
Pr og r a m
PRGM
ON
MODE MODE MODE
1
MODE
?→ A:?→ B:?→ C:(A - BC)÷(1- C)→ D:D < 28 STEP >
OUTPUT D : sum of geometric progression
Ex ecution Example:
The sum of the geometric progression with first term 1, last term 81 and common ratio 3 is
1+3+9+27+81=121
Prog
1
COMP 1P1
S A
1
D R
P1P1P2 P3 P4
G
1
8 1
3
EXE
EXE
EXE
S A
S A
S A
P1P1P2 P3 P4
P1P1P2 P3 P4
P1P1P2 P3 P4
D R
D R
D R
G
G
G
13