B&W 800 User Manual

A legend reborn  Everything  moves  on.  Even 
when you’ve reached the pinnacle of technological 
achievement,  there are  always new  goals to aim  for, new standards  to set.  In  1979,  we redefined  what’s  possible  in sound reproduction with  the  very first 800 Series speaker –  the  Matrix  800.  
now we’ve raised the benchmark yet again. The 800  Series Diamond harnesses the unique properties of  diamond througho ut the range, producing a sound 
of unheard-of accuracy and realism. At  Bowers &  Wilkins, the quest for perfection never en ds.
The e volution of exc ellence  Introdu cing sup erior drive  units  housed  in sepa rate  chambe rs, the  Matrix  800’s  unprece dented s ound quality  made  the speaker a  fixture    in to p recordi ng studi os and  the h omes of discer ning aud io  enthus iasts. W ith th e Nautil us  800 S eries and now  the 800  Series  Diamond , the  tradition  contin ues.
30
20
10
0
-10
-20
-30 10000 20000 100000Frequency (Hz)
Simulated acoustic Frequency response
The miracle material It can cut stone and grind  glass. It’s a superb thermal conductor. And it’s  the  magic ingredient in  every model in the  new 800  Series Diamond range. Our acoustic research expert  Dr Gary Geaves explains why diamond is the ultimate  tweeter material.
Simulated acoustic Frequency response
30
20
10
0
-10
-20
-30 10000 20000 100000Frequency (Hz)
Simulated acoustic Frequency response
30
20
10
0
-10
-20
-30 10000 20000 100000Frequency (Hz)
Comput er simul ations show  that  the response of  a  diamon d dome  (right)  more  closel y matche s the  behaviour  of th e hypothetical  perfect  tweete r than  an alum inium  dome  (left).
Tell us about tweeter design – what are you trying to achieve, and what are the main challenges to overcome?
Our aim here at Bowers & Wilkins has always  been  to design transducers that accura tely  reprod uce the signal. It’s really quite easy to  create a sound but it’s much more difficult to  reprod uce a  signal accurately. When it comes  to tweeters, th is aim translates  into creating   a device that moves as a  rigid piston over   the audible frequency range – in  other words,  the range  below   20 kHz.
As you go up in frequency, you reach a  point where the tweeter stops behaving in a  nice, controlled way and it starts to  resonate.  The frequency at which this occurs is  usually  called the break-up frequency. As you  go  beyond the break-up frequency, you encounter  more and more resonance. The  problem with  resonance is that it imparts a character to the  speaker, which  is obviously  not what you want  when  you’re aiming to  accurately reproduce   a signal.
So the main challenge in tweeter design   is to overcome the problem of resonance.    And you do this by trying to push the break­up frequency as far above the range of human  hearing as it can p ossibly go.
What have you been doing to get around this problem?
For a long time, Bo wers & Wilkins have used  aluminium dome  tweeters. Aluminium’s a  really  good  material t o use, because it’s relatively  light and  stiff, and it results in a relatively high  break-up frequency. Over the years we’ve be en  able  to optimis e the  mechanical design. For  example, for th e second generation 800  Series,  we  managed to improve the break-up  frequency  from about  23 kHz to 30 kHz.
It was then that we   noticed something  odd.  We found that, with each improvement  in break-up frequency, the resulting tweeter  sounded much cl eaner. Not  that  surprising,  you might  think   – but we  found this  really  curious because,  as I’ve already said, human  beings can only   hear  up to 20 kHz. Improving  the break-up frequency from 23 to 30 kHz  shouldn’t have made any difference to the  audible sound q uality. And yet  it did. So  we started to wonder  why this was, and if  there  might be ways of raising the br eak-up  frequency much higher.
How did you go about trying to raise the break-up frequency level? What sort of design approaches did you consider?
We started  off by thinking about the  size, shape  and positioning of the tweeter. Now, the easiest  way to improve the break-up  frequency is to  make  the tweete r much smaller. The problem  with  that  approach is  that, to get the same  output over the   same  bandwidth, you have to  drive the  speak er a lot harder. The  dome  has to  move  a lot more. And when  that  happens, you  run into problems with linearity, distortion and  power compression.
An alternative approach might be  to use  a supplementary tweeter in addition to   your  main  tweeter. We did consider this, but we  found it just complicated the situatio n. Instead  of compensating for the deficiencies o f a main  tweeter, the su pplementary tweeter  just  added  its own set of problems. There was al so the  potential for i nterference between the two  tweeters. In th e end, this approach just didn’t  seem  consistent with our principle of keeping  things simple.
How did you hit on the idea of using diamond as a tweeter dome material?
We discovered the benefits of dia mond thanks  to a process called finite  element analysis.  It’s  a tool that’s widely used in the aerospace and  automotive industries to create virtual computer  prototypes, so you can carry out  experiments  before committing  to a real  physi cal prototype.
By using finite   element analysis  we were  able  to look more closely than ever before at  how a speaker reproduces sound. We could  examine in deta il how the whole  structure  vibrates, and t he acoustic field  that results from  the vibration.  We were  also  able to look at the  motor systems i n loudspeakers. This allowed  us to come up  with new  ways to optimise  sensitivity, improve linearity, and design better  shielding.
It was by using fin ite element analysis that  we first simula ted the response of a perfect,  rigid tweeter, made  from an infinitely stif f  material. This  is a material that doesn’t exist  in reality  – but that’s another beauty  of finite  element analysis; you can do things that y ou  can’t  do in the real world. So we started to look  at tweeter dome   materials we could use instead  of the aluminiu m – materials that shared similar  properties to the hypothetical perfect dome.  And we found that t he ultimate material – the  absolute closest  match in terms of its rig idity  and dynamic sti ffness – is  diamond.
So what are the benefits of using diamond tweeter domes?
As I said,  with aluminium, we were getting a  maximum break-up frequency of about 30 kHz.  Pretty amazing, when you consider the human  hearing threshold is 20 kHz. But by using  diamond, we were able to go far, far higher than  that, creating a tweeter that breaks up at 70 kHz. 
However, diamond  doesn’t just have a  much  higher break-up frequenc y – it also  outperforms   aluminium within  the range of  human hearing.  When you compare the  response of a diamond  tweeter with the perfect  hypothetica l rigid tweeter, the results are very  similar below 2 0 kHz. And this means  that you  can hear a dramatic improvement in sound  quality.
The resulting tweeter sounds  more  effortless, and yet more detailed,  and has  a much more realistic soundstage  than the  standard aluminium tweeter.
Dr Ga ry Geaves, Head  of Research,   Bowers  & Wi lkins
HTM2  Diamond
HTM4  Diamond
Diamon ds all round  The  800 S eries Diamond f amily  encomp asses sp eakers of all  sizes  and applications, from  mighty  studio  monitors to  booksh elf spea kers that will  fit  snugly  into domestic  spaces  of an y size. But wh ile every  speake r is different,  they ha v e  two k ey features in  common:  a twe eter made from  pure  diamon d, and  sound q uality  that  will leave you  speechle ss.800 D iamond 802 D iamond 803 D iamond 804 D iamond 805 D iamond
A diamond is born
Making diamond  the natural way takes volcanic  temperatures and pressures, and around two  billion years.  Hardly ideal if you want to produce  it for manufact uring purposes, let alone form  it into the precise shape required for a tweeter  dome. Luckily, scientists have found a way  around this. Chemical vapour  deposition is   a technique tha t allows diamond to be grown,   like  a crystal,   under laboratory  conditions.
The process starts with the former – the dome  of metal on which t he thin layer of  diamond is  grown. Each former is  meticulously inspected  and weighed bef ore being transferred to a  specially designed furnace,  where gases  are  super-heated and pressurised. Out of  the gases  forms a carbon frost (diamond crystals), which  grows  on the surface of the former to create   a super-fine, ultra-hard diamond dome.
Making the cut
Once  the diamon d has  formed, it  is precision­cut by laser to remove any surface irregularities  and to make sure that the  geometry of each  tweeter dome ex actly matches the  next.  The  diamond domes a re then cleaned in four stages  in an ultra-son ic tank, before a  protective  platinum coating  is applied  to the surface.
Each  diamond do me is  rigorously tested and  inspected for t he tiniest signs of imperfection.  Only  when  a dome ha s passed every test do  we give it the fina l seal of approval – its own  unique serial n umber. From this  number we can  trace the  entire history of its manufacture, right  back  to the former  on which it was grown.
A head for sound
Nautilus tubes
Not all the sound g enerated by tweeter drive  units is good sound.  To soak up wayward  sound energy an d reduce resonances  to a  minimum, every  tweeter in the 800 Series  Diamond is moun ted on top of the cabinet, and  uses  the taperi ng tube design from Bowers &  Wil kins’ trailblazing Nautilus speaker. Added to  this, our  new quad-magnet design  improves  sensitivity, which reduces compression  and  brings music to   life. So all the sound you hear  is good sound.
The teardrop-shaped midrange  head is a  distinctive   feature of  both the top-of-the-range  800 Diamond and   the 802 Diamond. Moulded  from Marlan™, a synthetic, mineral filled resin,  this  granite-hard  enclosure i s sprayed with  seven coats of lacquer and polished by han d  until it’s as  smooth as glass.
Quad ma gnets  For the  800 Series Diamon d we  have redefined the science of  magnet motor design. In the  tweeter, a unique quad magnet  design (in red, above) focuses  the magnetic energy right  where the voice coil sits, and  keeps the driver running cool  and smooth.
Loading...
+ 20 hidden pages