Beckhoff EL2595 User Manual

Documentation | EN
EL2595
1-channel LED constant current terminal
2021-02-12 | Version: 1.2

Table of contents

Table of contents
1 Foreword ....................................................................................................................................................5
1.4.1 Beckhoff Identification Code (BIC)................................................................................... 10
2 Product overview.....................................................................................................................................12
2.1 Introduction......................................................................................................................................12
2.2 Technical data .................................................................................................................................13
2.3 Start .................................................................................................................................................13
3 Basics communication ...........................................................................................................................14
3.1 EtherCAT basics..............................................................................................................................14
3.2 EtherCAT cabling – wire-bound.......................................................................................................14
3.3 General notes for setting the watchdog...........................................................................................15
3.4 EtherCAT State Machine.................................................................................................................17
3.5 CoE Interface...................................................................................................................................19
3.6 Distributed Clock .............................................................................................................................24
4 Mounting and wiring................................................................................................................................25
4.1 Installation on mounting rails ...........................................................................................................25
4.2 Connection system ..........................................................................................................................27
4.3 Positioning of passive Terminals .....................................................................................................30
4.4 Prescribed installation position ........................................................................................................31
4.5 UL notice .........................................................................................................................................33
4.6 LEDs and connection ......................................................................................................................34
5 Commissioning........................................................................................................................................36
5.1 TwinCAT Quick Start .......................................................................................................................36
5.1.1 TwinCAT 2 ....................................................................................................................... 39
5.1.2 TwinCAT 3 ....................................................................................................................... 49
5.2 TwinCAT Development Environment ..............................................................................................62
5.2.1 Installation of the TwinCAT real-time driver..................................................................... 63
5.2.2 Notes regarding ESI device description........................................................................... 68
5.2.3 TwinCAT ESI Updater ..................................................................................................... 72
5.2.4 Distinction between Online and Offline............................................................................ 72
5.2.5 OFFLINE configuration creation ...................................................................................... 73
5.2.6 ONLINE configuration creation ........................................................................................ 78
5.2.7 EtherCAT subscriber configuration.................................................................................. 86
5.2.8 Import/Export of EtherCAT devices with SCI and XTI ..................................................... 95
5.3 Quick start......................................................................................................................................101
5.4 General Notes - EtherCAT Slave Application................................................................................103
5.5 Basic Function Principles ..............................................................................................................112
5.5.1 General procedure......................................................................................................... 112
5.5.2 Normal digital output...................................................................................................... 113
5.5.3 External trigger input...................................................................................................... 115
EL2595 3Version: 1.2
Table of contents
5.5.4 Distributed Clocks controlled output .............................................................................. 116
5.5.5 Emergency Flash........................................................................................................... 116
5.5.6 Operating hour and switching cycle counter.................................................................. 116
5.6 Process data..................................................................................................................................116
5.6.1 Preselection of process data ......................................................................................... 117
5.6.2 Explanation of the process data .................................................................................... 117
5.6.3 Process data overview................................................................................................... 121
5.7 Distributed Clocks settings ............................................................................................................125
5.7.1 Basic principles.............................................................................................................. 125
5.7.2 Determination of the current Distributed Clock time ...................................................... 126
5.7.3 Process data.................................................................................................................. 129
5.7.4 Example of a sequence with activated Distributed Clocks ............................................ 129
5.8 Object description and parameterization .......................................................................................131
5.8.1 Profile-specific objects ................................................................................................... 131
5.8.2 Standard objects............................................................................................................ 136
5.9 CoE data........................................................................................................................................142
6 Diagnostics ............................................................................................................................................147
6.1 Diagnostics – basic principles of diag messages ..........................................................................147
6.2 Diagnostics - specific diag messages - EL2595 ............................................................................156
7 Appendix ................................................................................................................................................158
7.1 Firmware compatibility...................................................................................................................158
7.2 Firmware Update EL/ES/EM/ELM/EPxxxx ....................................................................................158
7.2.1 Device description ESI file/XML..................................................................................... 160
7.2.2 Firmware explanation .................................................................................................... 163
7.2.3 Updating controller firmware *.efw................................................................................. 164
7.2.4 FPGA firmware *.rbf....................................................................................................... 165
7.2.5 Simultaneous updating of several EtherCAT devices.................................................... 169
7.3 Restoring the delivery state ...........................................................................................................170
7.4 Support and Service ......................................................................................................................171
EL25954 Version: 1.2
Foreword

1 Foreword

1.1 Notes on the documentation

Intended audience
This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards. It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components. It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.
The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.
Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.
Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, EtherCATG®, EtherCATG10®, EtherCATP®, SafetyoverEtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.
Patent Pending
The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Copyright
© Beckhoff Automation GmbH & Co. KG, Germany. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
EL2595 5Version: 1.2
Foreword

1.2 Safety instructions

Safety regulations
Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.
Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.
Description of instructions
In this documentation the following instructions are used. These instructions must be read carefully and followed without fail!
DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.
WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.
CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.
NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.
Tip or pointer
This symbol indicates information that contributes to better understanding.
EL25956 Version: 1.2

1.3 Documentation issue status

Version Comment
1.2 - Update chapter “Technical data”
- Update structure
1.1 - Update chapter “Technical data”
- Update structure
- Update revisions status
1.0 - 1st public issue
- Complements and corrections
- Update structure
0.5 - Migration
0.4 - Complements and corrections
0.3 - Complements and corrections
0.2 - Complements and corrections
0.1 - Provisional documentation for EL2595

1.4 Version identification of EtherCAT devices

Foreword
Designation
A Beckhoff EtherCAT device has a 14-digit designation, made up of
• family key
• type
• version
• revision
Example Family Type Version Revision
EL3314-0000-0016 EL terminal
(12 mm, non­pluggable connection level)
ES3602-0010-0017 ES terminal
(12 mm, pluggable connection level)
CU2008-0000-0000 CU device 2008 (8-port fast ethernet switch) 0000 (basic type) 0000
Notes
• The elements mentioned above result in the technical designation. EL3314-0000-0016 is used in the example below.
• EL3314-0000 is the order identifier, in the case of “-0000” usually abbreviated to EL3314. “-0016” is the EtherCAT revision.
• The order identifier is made up of
- family key (EL, EP, CU, ES, KL, CX, etc.)
- type (3314)
- version (-0000)
• The revision -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff. In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation. Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. “EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)”.
3314 (4-channel thermocouple terminal)
3602 (2-channel voltage measurement)
0000 (basic type) 0016
0010 (high­precision version)
0017
EL2595 7Version: 1.2
Foreword
• The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.
Identification number
Beckhoff EtherCAT devices from the different lines have different kinds of identification numbers:
Production lot/batch number/serial number/date code/D number
The serial number for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.
Structure of the serial number: KKYYFFHH
KK - week of production (CW, calendar week) YY - year of production FF - firmware version HH - hardware version
Example with Ser. no.: 12063A02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 ­hardware version 02
Exceptions can occur in the IP67 area, where the following syntax can be used (see respective device documentation):
Syntax: D ww yy x y z u
D - prefix designation ww - calendar week yy - year x - firmware version of the bus PCB y - hardware version of the bus PCB z - firmware version of the I/O PCB u - hardware version of the I/O PCB
Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O PCB: 1
Examples of markings
Fig.1: EL5021 EL terminal, standard IP20 IO device with serial/ batch number and revision ID (since 2014/01)
EL25958 Version: 1.2
Fig.2: EK1100 EtherCAT coupler, standard IP20 IO device with serial/ batch number
Foreword
Fig.3: EL3202-0020 with serial/ batch number 26131006 and unique ID-number 204418
EL2595 9Version: 1.2
Foreword

1.4.1 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.
Fig.4: BIC as data matrix code (DMC, code scheme ECC200)
The BIC will be introduced step by step across all product groups.
Depending on the product, it can be found in the following places:
• on the packaging unit
• directly on the product (if space suffices)
• on the packaging unit and the product
The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.
Each piece of information can be uniquely identified using the so-called data identifier (ANSIMH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it. The data under positions 1 to 4 are always available.
The following information is contained:
EL259510 Version: 1.2
Item
Type of
no.
information
1 Beckhoff order
number
2 Beckhoff Traceability
Number (BTN)
3 Article description Beckhoff article
4 Quantity Quantity in packaging
5 Batch number Optional: Year and week
6 ID/serial number Optional: Present-day
7 Variant number Optional: Product variant
...
Explanation Data
Beckhoff order number 1P 8 1P072222
Unique serial number, see note below
description, e.g. EL1008
unit, e.g. 1, 10, etc.
of production
serial number system, e.g. with safety products or calibrated terminals
number on the basis of standard products
Foreword
Number of digits
identifier
S 12 SBTNk4p562d7
1K 32 1KEL1809
Q 6 Q1
2P 14 2P401503180016
51S 12 51S678294104
30P 32 30PF971, 2*K183
incl. data identifier
Example
Further types of information and data identifiers are used by Beckhoff and serve internal processes.
Structure of the BIC
Example of composite information from item 1 to 4 and 6. The data identifiers are marked in red for better display:
BTN
An important component of the BIC is the Beckhoff Traceability Number (BTN, item no.2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.
NOTE
This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and with­out prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.
EL2595 11Version: 1.2
Product overview

2 Product overview

2.1 Introduction

Fig.5: EL2595
1-channel LED constant current source
The EL2595 EtherCAT Terminal contains a constant current source for LEDs and is designed to control one or more LEDs connected in series.
The user specifies the required set current, the integrated power supply unit then provides the required forward voltage, depending on the connected LEDs. For this purpose, the EL2595 has a step-up/step-down power supply unit, which generates the output voltage from the 24VDC input voltage. The output voltage is also adjusted during operation in order to maintain the setpoint current.
The current can be switched quickly for short-term lighting, hence even extremely short flashes of light are possible. The pulse duration is adjustable from 200µs to endless. As with the EL2252, the flash time itself can be set by a distributed clock timestamp; however, an external trigger input is also available. Extensive real-time diagnosis functions for input current/voltage and output current/voltage enable detailed control of the LED light intensity. If a definable load corridor is left, e.g. due to a load error, the EL2595 switches off after a warning to protect the load. This can be reset.
Quick links
EtherCAT basics
Basic Function Principles [}112]
Quick start [}101]
Most important CoE entries [}142]
Process data [}116]
EL259512 Version: 1.2
Product overview

2.2 Technical data

Technical data EL2595
Application recommendation Continuous light >300 mA and simple lighting
applications
Connection technology 2-wire
Number of outputs 1
Input voltage (power contacts) 24VDC (-15 %/+20 %)
Rated load voltage 2 - 48VDC, (controlled automatically, observe the dead
band in control mode)
Load type resistive
Distributed clocks yes
Distr. Clocks accuracy << 1µs
Min. output current (continuous) 300mA
Max. output current (continuous) 700mA (short-circuit proof)
Switching times 200µs to endless
Trigger input max. 24V, typ. 8mA max., switching level approx. 3V,
reverse polarity up to max. 5V maximum load
Current consumption via E-bus typ. 110mA
Electrical isolation 500V (E-bus/field voltage)
Current consumption power contacts typ. 20mA + load
Special features optional automatic operation in case of communication
interruption, extensive real-time diagnostics, external trigger input
Power supply for the electronics via the E-bus
Configuration via TwinCAT System Manager
Weight approx.55g
Permissible ambient temperature range during operation
Permissible ambient temperature range during storage
Permissible relative air humidity 95%, no condensation
Dimensions (W x H x D) approx. 15mm x 100mm x 70mm (width aligned:
Mounting [}25]
Vibration/shock resistance conforms to EN60068-2-6/ EN60068-2-27
EMC immunity/emission conforms to EN61000-6-2/ EN61000-6-4
Protection class IP20
Installation position
Approval CE
0°C ... + 55°C
-25°C ... + 85°C
12mm)
on 35mm mounting rail according to EN60715
prescribed installation position - see note [}31]!

2.3 Start

For commissioning:
• Install the EL2595 as described in chapter Installation [}25]
• Configure the EL2595 in TwinCAT as described in chapter Commissioning [}101].
EL2595 13Version: 1.2
Basics communication

3 Basics communication

3.1 EtherCAT basics

Please refer to the EtherCAT System Documentation for the EtherCAT fieldbus basics.

3.2 EtherCAT cabling – wire-bound

The cable length between two EtherCAT devices must not exceed 100 m. This results from the FastEthernet technology, which, above all for reasons of signal attenuation over the length of the cable, allows a maximum
link length of 5 + 90 + 5 m if cables with appropriate properties are used. See also the Design recommendations for the infrastructure for EtherCAT/Ethernet.
Cables and connectors
For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer.
EtherCAT uses RJ45 plug connectors, for example. The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3).
Pin Color of conductor Signal Description
1 yellow TD + Transmission Data +
2 orange TD - Transmission Data -
3 white RD + Receiver Data +
6 blue RD - Receiver Data -
Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between EtherCAT devices from Beckhoff.
Recommended cables
It is recommended to use the appropriate Beckhoff components e.g.
- cable sets ZK1090-9191-xxxx respectively
- RJ45 connector, field assembly ZS1090-0005
- EtherCAT cable, field assembly ZB9010, ZB9020
Suitable cables for the connection of EtherCAT devices can be found on the Beckhoff website!
E-Bus supply
A bus coupler can supply the EL terminals added to it with the E-bus system voltage of 5V; a coupler is thereby loadable up to 2A as a rule (see details in respective device documentation). Information on how much current each EL terminal requires from the E-bus supply is available online and in the catalogue. If the added terminals require more current than the coupler can supply, then power feed
terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.
The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager. A shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be placed before such a position.
EL259514 Version: 1.2
Basics communication
Fig.6: System manager current calculation
NOTE
Malfunction possible!
The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!

3.3 General notes for setting the watchdog

ELxxxx terminals are equipped with a safety feature (watchdog) that switches off the outputs after a specifiable time e.g. in the event of an interruption of the process data traffic, depending on the device and settings, e.g. in OFF state.
The EtherCAT slave controller (ESC) in the EL2xxx terminals features two watchdogs:
• SM watchdog (default: 100 ms)
• PDI watchdog (default: 100 ms)
SM watchdog (SyncManager Watchdog)
The SyncManager watchdog is reset after each successful EtherCAT process data communication with the terminal. If no EtherCAT process data communication takes place with the terminal for longer than the set and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the outputs are set to FALSE. The OP state of the terminal is unaffected. The watchdog is only reset after a successful EtherCAT process data access. Set the monitoring time as described below.
The SyncManager watchdog monitors correct and timely process data communication with the ESC from the EtherCAT side.
PDI watchdog (Process Data Watchdog)
If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and activated PDI watchdog time, this watchdog is triggered. PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT slave, for example. The PDI watchdog can be used to monitor this communication for failure.
The PDI watchdog monitors correct and timely process data communication with the ESC from the application side.
The settings of the SM- and PDI-watchdog must be done for each slave separately in the TwinCAT System Manager.
EL2595 15Version: 1.2
Basics communication
Fig.7: EtherCAT tab -> Advanced Settings -> Behavior -> Watchdog
Notes:
• the multiplier is valid for both watchdogs.
• each watchdog has its own timer setting, the outcome of this in summary with the multiplier is a resulting time.
• Important: the multiplier/timer setting is only loaded into the slave at the start up, if the checkbox is activated. If the checkbox is not activated, nothing is downloaded and the ESC settings remain unchanged.
Multiplier
Multiplier
Both watchdogs receive their pulses from the local terminal cycle, divided by the watchdog multiplier:
1/25 MHz * (watchdog multiplier + 2) = 100µs (for default setting of 2498 for the multiplier)
The standard setting of 1000 for the SM watchdog corresponds to a release time of 100ms.
The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick. The multiplier can be modified in order to adjust the watchdog time over a larger range.
EL259516 Version: 1.2
Basics communication
Example “Set SM watchdog”
This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT communication is interrupted, the SM watchdog is triggered after the set time and the outputs are erased. This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The default SM watchdog setting is 100ms. The setting range is 0...65535. Together with a multiplier with a range of 1...65535 this covers a watchdog period between 0...~170 seconds.
Calculation
Multiplier = 2498 → watchdog base time = 1 / 25MHz * (2498 + 2) = 0.0001seconds = 100µs SM watchdog = 10000 → 10000 * 100µs = 1second watchdog monitoring time
CAUTION
Undefined state possible!
The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals from version -0016. In previous versions this operating mode should not be used.
CAUTION
Damage of devices and undefined state possible!
If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is the deactivation of the watchdog! Set outputs are NOT set in a safe state, if the communication is inter­rupted.

3.4 EtherCAT State Machine

The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.
A distinction is made between the following states:
• Init
• Pre-Operational
• Safe-Operational and
• Operational
• Boot
The regular state of each EtherCAT slave after bootup is the OP state.
EL2595 17Version: 1.2
Basics communication
Fig.8: States of the EtherCAT State Machine
Init
After switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible. The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.
Pre-Operational (Pre-Op)
During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initialized correctly.
In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCAT master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters that may differ from the default settings are also transferred.
Safe-Operational (Safe-Op)
During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync manager channels for process data communication and, if required, the distributed clocks settings are correct. Before it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP­RAM areas of the EtherCAT slave controller (ECSC).
In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs in a safe state, while the input data are updated cyclically.
Outputs in SAFEOP state
The default set watchdog [}15] monitoring sets the outputs of the module in a safe state - depend­ing on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the watchdog monitoring in the module, the outputs can be switched or set also in the SAFEOP state.
Operational (Op)
Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid output data.
In the Op state the slave copies the output data of the masters to its outputs. Process data and mailbox communication is possible.
EL259518 Version: 1.2
Basics communication
Boot
In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.
In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but no other mailbox communication and no process data communication.

3.5 CoE Interface

General description
The CoE interface (CAN application protocol over EtherCAT)) is used for parameter management of EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable parameters which they require for operation, diagnostics or commissioning.
CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus. The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via EtherCAT in read or write mode, depending on the attributes.
Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger byte fields. They can be used to describe a wide range of features. Examples of such parameters include manufacturer ID, serial number, process data settings, device name, calibration values for analog measurement or passwords.
The order is specified in two levels via hexadecimal numbering: (main)index, followed by subindex. The value ranges are
• Index: 0x0000 …0xFFFF (0...65535
• SubIndex: 0x00…0xFF (0...255
dez
)
dez
)
A parameter localized in this way is normally written as 0x8010:07, with preceding “0x” to identify the hexadecimal numerical range and a colon between index and subindex.
The relevant ranges for EtherCAT fieldbus users are:
• 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer, serial number etc., plus information about the current and available process data configurations.
• 0x8000: This is where the operational and functional parameters for all channels are stored, such as filter settings or output frequency.
Other important ranges are:
• 0x4000: here are the channel parameters for some EtherCAT devices. Historically, this was the first parameter area before the 0x8000 area was introduced. EtherCAT devices that were previously equipped with parameters in 0x4000 and changed to 0x8000 support both ranges for compatibility reasons and mirror internally.
• 0x6000: Input PDOs (“input” from the perspective of the EtherCAT master)
• 0x7000: Output PDOs (“output” from the perspective of the EtherCAT master)
Availability
Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor usually have no variable parameters and therefore no CoE list.
If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the elements:
EL2595 19Version: 1.2
Basics communication
Fig.9: “CoE Online” tab
The figure above shows the CoE objects available in device “EL2502”, ranging from 0x1000 to 0x1600. The subindices for 0x1018 are expanded.
Data management and function “NoCoeStorage”
Some parameters, particularly the setting parameters of the slave, are configurable and writeable. This can be done in write or read mode
• via the System Manager (Fig. “CoE Online” tab) by clicking This is useful for commissioning of the system/slaves. Click on the row of the index to be parameterized and enter a value in the “SetValue” dialog.
• from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library This is recommended for modifications while the system is running or if no System Manager or operating staff are available.
Data management
If slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart. The situation may be different with other manufacturers.
An EEPROM is subject to a limited lifetime with respect to write operations. From typically 100,000 write operations onwards it can no longer be guaranteed that new (changed) data are reliably saved or are still readable. This is irrelevant for normal commissioning. However, if CoE parameters are continuously changed via ADS at machine runtime, it is quite possible for the lifetime limit to be reached. Support for the NoCoeStorage function, which suppresses the saving of changed CoE val­ues, depends on the firmware version. Please refer to the technical data in this documentation as to whether this applies to the respective device.
• If the function is supported: the function is activated by entering the code word 0x12345678 once in CoE 0xF008 and remains active as long as the code word is not changed. After switching the device on it is then inactive. Changed CoE values are not saved in the EEPROM and can thus be changed any number of times.
• Function is not supported: continuous changing of CoE values is not permissible in view of the lifetime limit.
EL259520 Version: 1.2
Startup list
Changes in the local CoE list of the terminal are lost if the terminal is replaced. If a terminal is re­placed with a new Beckhoff terminal, it will have the default settings. It is therefore advisable to link all changes in the CoE list of an EtherCAT slave with the Startup list of the slave, which is pro­cessed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave can automatically be parameterized with the specifications of the user.
If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup list must be used.
Recommended approach for manual modification of CoE parameters
• Make the required change in the System Manager The values are stored locally in the EtherCAT slave
• If the value is to be stored permanently, enter it in the Startup list. The order of the Startup entries is usually irrelevant.
Basics communication
Fig.10: Startup list in the TwinCAT System Manager
The Startup list may already contain values that were configured by the System Manager based on the ESI specifications. Additional application-specific entries can be created.
Online/offline list
While working with the TwinCAT System Manager, a distinction has to be made whether the EtherCAT device is “available”, i.e. switched on and linked via EtherCAT and therefore online, or whether a configuration is created offline without connected slaves.
In both cases a CoE list as shown in Fig. “CoE online tab” is displayed. The connectivity is shown as offline/ online.
• If the slave is offline
◦ The offline list from the ESI file is displayed. In this case modifications are not meaningful or
possible.
◦ The configured status is shown under Identity.
◦ No firmware or hardware version is displayed, since these are features of the physical device.
Offline is shown in red.
EL2595 21Version: 1.2
Basics communication
Fig.11: Offline list
• If the slave is online
◦ The actual current slave list is read. This may take several seconds, depending on the size and
cycle time.
◦ The actual identity is displayed
◦ The firmware and hardware version of the equipment according to the electronic information is
displayed
Online is shown in green.
Fig.12: Online list
EL259522 Version: 1.2
Basics communication
Channel-based order
The CoE list is available in EtherCAT devices that usually feature several functionally equivalent channels. For example, a 4-channel analog 0...10V input terminal also has four logical channels and therefore four identical sets of parameter data for the channels. In order to avoid having to list each channel in the documentation, the placeholder “n” tends to be used for the individual channel numbers.
In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel parameters. The channel-based order is therefore arranged in 16
dec
/10
steps. The parameter range
hex
0x8000 exemplifies this:
• Channel 0: parameter range 0x8000:00 ... 0x800F:255
• Channel 1: parameter range 0x8010:00 ... 0x801F:255
• Channel 2: parameter range 0x8020:00 ... 0x802F:255
• ...
This is generally written as 0x80n0.
Detailed information on the CoE interface can be found in the EtherCAT system documentation on the Beckhoff website.
EL2595 23Version: 1.2
Basics communication

3.6 Distributed Clock

The distributed clock represents a local clock in the EtherCAT slave controller (ESC) with the following characteristics:
• Unit 1 ns
• Zero point 1.1.2000 00:00
• Size 64 bit (sufficient for the next 584 years; however, some EtherCAT slaves only offer 32-bit support, i.e. the variable overflows after approx. 4.2 seconds)
• The EtherCAT master automatically synchronizes the local clock with the master clock in the EtherCAT bus with a precision of < 100 ns.
For detailed information please refer to the EtherCAT system description.
EL259524 Version: 1.2
Mounting and wiring

4 Mounting and wiring

4.1 Installation on mounting rails

WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!
Assembly
Fig.13: Attaching on mounting rail
The bus coupler and bus terminals are attached to commercially available 35mm mounting rails (DIN rails according to EN60715) by applying slight pressure:
1. First attach the fieldbus coupler to the mounting rail.
2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the compo­nents with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail. If the terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings.
Fixing of mounting rails
The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).
EL2595 25Version: 1.2
Mounting and wiring
Disassembly
Fig.14: Disassembling of terminal
Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:
1. Pull the terminal by its orange-colored lugs approximately 1cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force.
2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block.
Connections within a bus terminal block
The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components:
• The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics.
• The power contacts deal with the supply for the field electronics and thus represent a supply rail within the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24V) or for higher voltages via power feed terminals.
Power Contacts
During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Termi­nals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.
PE power contact
The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125A.
EL259526 Version: 1.2
Fig.15: Power contact on left side
Mounting and wiring
NOTE
Possible damage of the device
Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In or­der to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10mm from the group of terminals.
WARNING
Risk of electric shock!
The PE power contact must not be used for other potentials!

4.2 Connection system

WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the Bus Terminals!
Overview
The Bus Terminal system offers different connection options for optimum adaptation to the respective application:
• The terminals of KLxxxx and ELxxxx series with standard wiring include electronics and connection level in a single enclosure.
• The terminals of KSxxxx and ESxxxx series feature a pluggable connection level and enable steady wiring while replacing.
• The High Density Terminals (HD Terminals) include electronics and connection level in a single enclosure and have advanced packaging density.
EL2595 27Version: 1.2
Mounting and wiring
Standard wiring
Fig.16: Standard wiring
The terminals of KLxxxx and ELxxxx series have been tried and tested for years. They feature integrated screwless spring force technology for fast and simple assembly.
Pluggable wiring
Fig.17: Pluggable wiring
The terminals of KSxxxx and ESxxxx series feature a pluggable connection level. The assembly and wiring procedure for the KS series is the same as for the KLxxxx and ELxxxx series. The KS/ES series terminals enable the complete wiring to be removed as a plug connector from the top of the housing for servicing. The lower section can be removed from the terminal block by pulling the unlocking tab. Insert the new component and plug in the connector with the wiring. This reduces the installation time and eliminates the risk of wires being mixed up.
The familiar dimensions of the terminal only had to be changed slightly. The new connector adds about 3 mm. The maximum height of the terminal remains unchanged.
A tab for strain relief of the cable simplifies assembly in many applications and prevents tangling of individual connection wires when the connector is removed.
Conductor cross sections between 0.08mm2 and 2.5mm2 can continue to be used with the proven spring force technology.
The overview and nomenclature of the product names for KSxxxx and ESxxxx series has been retained as known from KLxxxx and ELxxxx series.
High Density Terminals (HD Terminals)
Fig.18: High Density Terminals
The Bus Terminals from these series with 16 connection points are distinguished by a particularly compact design, as the packaging density is twice as large as that of the standard 12mm Bus Terminals. Massive conductors and conductors with a wire end sleeve can be inserted directly into the spring loaded terminal point without tools.
EL259528 Version: 1.2
Mounting and wiring
Wiring HD Terminals
The High Density Terminals of the KLx8xx and ELx8xx series doesn't support steady wiring.
Ultrasonically "bonded" (ultrasonically welded) conductors
Ultrasonically “bonded” conductors
It is also possible to connect the Standard and High Density terminals with ultrasonically “bonded” (ultrasonically welded) conductors. In this case, please note the tables concerning the
wire-size width [}29] below!
Wiring
Terminals for standard wiring ELxxxx/KLxxxx and for pluggable wiring ESxxxx/KSxxxx
Fig.19: Mounting a cable on a terminal connection
Up to eight connections enable the connection of solid or finely stranded cables to the Bus Terminals. The terminals are implemented in spring force technology. Connect the cables as follows:
1. Open a spring-loaded terminal by slightly pushing with a screwdriver or a rod into the square opening above the terminal.
2. The wire can now be inserted into the round terminal opening without any force.
3. The terminal closes automatically when the pressure is released, holding the wire securely and per­manently.
Terminal housing ELxxxx, KLxxxx ESxxxx, KSxxxx
Wire size width 0.08 ... 2,5mm
2
0.08 ... 2.5mm
2
Wire stripping length 8 ... 9mm 9 ... 10mm
High Density Terminals ELx8xx, KLx8xx (HD)
The conductors of the HD Terminals are connected without tools for single-wire conductors using the direct plug-in technique, i.e. after stripping the wire is simply plugged into the contact point. The cables are released, as usual, using the contact release with the aid of a screwdriver. See the following table for the suitable wire size width.
EL2595 29Version: 1.2
Mounting and wiring
Terminal housing High Density Housing
Wire size width (conductors with a wire end sleeve) 0.14 ... 0.75mm
Wire size width (single core wires) 0.08 ... 1.5mm
Wire size width (fine-wire conductors) 0.25 ... 1.5mm
Wire size width (ultrasonically “bonded" conductors)
only 1.5mm2 (see notice [}29]!)
2
2
2
Wire stripping length 8 ... 9mm
Shielding
Shielding
Analog sensors and actors should always be connected with shielded, twisted paired wires.

4.3 Positioning of passive Terminals

Hint for positioning of passive terminals in the bus terminal block
EtherCAT Terminals (ELxxxx / ESxxxx), which do not take an active part in data transfer within the bus terminal block are so called passive terminals. The passive terminals have no current consump­tion out of the E-Bus. To ensure an optimal data transfer, you must not directly string together more than two passive ter­minals!
Examples for positioning of passive terminals (highlighted)
Fig.20: Correct positioning
EL259530 Version: 1.2
Loading...
+ 147 hidden pages