4 Mounting and wiring................................................................................................................................26
4.1Instructions for ESD protection........................................................................................................26
4.2Installation on mounting rails ...........................................................................................................26
4.3Installation instructions for enhanced mechanical load capacity .....................................................30
4.6Positioning of passive Terminals .....................................................................................................36
4.7ATEX - Special conditions (standard temperature range) ...............................................................37
4.8ATEX - Special conditions (extended temperature range) ..............................................................38
4.9Continuative documentation about explosion protection .................................................................39
4.10 UL notice .........................................................................................................................................39
4.11 EL1202 - LEDs and pin assignment ................................................................................................40
4.12 EL1252, EL1254 - LEDs and pin assignment..................................................................................41
6.2.5Simultaneous updating of several EtherCAT devices.................................................... 150
6.3Restoring the delivery state ...........................................................................................................151
6.4Support and Service ......................................................................................................................152
EL1202, EL1252, EL12544Version: 2.8
Foreword
1Foreword
1.1Product overview: 2-/4-channel digital input terminals
EL1202 [}15] 1-channel digital input terminal 24VDC, TON/T
EL1202-0100 [}15] 1-channel digital input terminal 24VDC, TON/T
EL1252 [}17] 2-channel digital input terminal 24VDC, with time stamp
EL1252-0050 [}17] 2-channel digital input terminal 5VDC, with time stamp
EL1254 [}17] 4-channel digital input terminal 24VDC, with time
OFF
1μs
1μs, Distributed Clocks
OFF
1.2Notes on the documentation
Intended audience
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.
The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.
Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.
Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, EtherCATG®, EtherCATG10®, EtherCATP®, SafetyoverEtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH. Other designations used in this publication may be trademarks whose use by third parties for their
own purposes could violate the rights of the owners.
Patent Pending
The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding
applications or registrations in various other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.
Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.
Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.
Description of instructions
In this documentation the following instructions are used.
These instructions must be read carefully and followed without fail!
DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.
WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.
CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.
NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.
Tip or pointer
This symbol indicates information that contributes to better understanding.
EL1202, EL1252, EL12547Version: 2.8
Foreword
1.4Documentation issue status
VersionComment
2.8• Addenda chapter "Sensitivity of the input"
• Update structure
2.7• Correction chapter "EL1252, EL1254 - LEDs and pin assignment"
• Addenda chapter "Instructions for ESD protection"
• Addenda chapter "Installation instructions for enhanced mechanical load capacity"
• Addenda chapter "ATEX - Special conditions (extended temperature range)"
• Addenda chapter "TwinCAT Quickstart"
• Update chapter "TwinCAT 2.1x" -> "TwinCAT Development Environment"
• Update chapter "EL1252 - Process data"
2.0• First publication in PDF format
1.8• Technical data update
1.7• EL1250-0050 amended
• Structural adaptation
• Technical data update
1.6• Firmware compatibility list inserted
1.5• Notes on device description update amended; note on trademarks inserted
1.4• Description of sample program amended
1.3• Technical description amended
1.2• Technical description amended
1.1• Technical data and safety instructions amended
1.0• Technical changes added, description of principle amended
0.1• Provisional documentation for EL1202, EL1252
1.5Version identification of EtherCAT devices
Designation
A Beckhoff EtherCAT device has a 14-digit designation, made up of
• family key
• type
• version
• revision
EL1202, EL1252, EL12548Version: 2.8
Foreword
ExampleFamilyTypeVersionRevision
EL3314-0000-0016EL terminal
(12 mm, nonpluggable connection
level)
ES3602-0010-0017 ES terminal
(12 mm, pluggable
connection level)
CU2008-0000-0000 CU device2008 (8-port fast ethernet switch) 0000 (basic type) 0000
Notes
• The elements mentioned above result in the technical designation. EL3314-0000-0016 is used in the
example below.
• EL3314-0000 is the order identifier, in the case of “-0000” usually abbreviated to EL3314. “-0016” is the
EtherCAT revision.
• The order identifier is made up of
- family key (EL, EP, CU, ES, KL, CX, etc.)
- type (3314)
- version (-0000)
• The revision -0016 shows the technical progress, such as the extension of features with regard to the
EtherCAT communication, and is managed by Beckhoff.
In principle, a device with a higher revision can replace a device with a lower revision, unless specified
otherwise, e.g. in the documentation.
Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave
Information) in the form of an XML file, which is available for download from the Beckhoff web site.
From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. “EL5021 EL terminal,standard IP20 IO device with batch number and revision ID (since 2014/01)”.
• The type, version and revision are read as decimal numbers, even if they are technically saved in
hexadecimal.
3314 (4-channel thermocouple
terminal)
3602 (2-channel voltage
measurement)
0000 (basic type) 0016
0010 (highprecision version)
0017
Identification number
Beckhoff EtherCAT devices from the different lines have different kinds of identification numbers:
Production lot/batch number/serial number/date code/D number
The serial number for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker.
The serial number indicates the configuration in delivery state and therefore refers to a whole production
batch, without distinguishing the individual modules of a batch.
Structure of the serial number: KKYYFFHH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version
Example with
Ser. no.: 12063A02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 hardware version 02
Exceptions can occur in the IP67 area, where the following syntax can be used (see respective device
documentation):
Syntax: D ww yy x y z u
D - prefix designation
ww - calendar week
yy - year
x - firmware version of the bus PCB
EL1202, EL1252, EL12549Version: 2.8
Foreword
y - hardware version of the bus PCB
z - firmware version of the I/O PCB
u - hardware version of the I/O PCB
Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version
of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O
PCB: 1
Unique serial number/ID, ID number
In addition, in some series each individual module has its own unique serial number.
See also the further documentation in the area
• IP67: EtherCAT Box
• Safety: TwinSafe
• Terminals with factory calibration certificate and other measuring terminals
Examples of markings
Fig.1: EL5021 EL terminal, standard IP20 IO device with serial/ batch number and revision ID (since
2014/01)
Fig.2: EK1100 EtherCAT coupler, standard IP20 IO device with serial/ batch number
EL1202, EL1252, EL125410Version: 2.8
Fig.3: CU2016 switch with serial/ batch number
Foreword
Fig.4: EL3202-0020 with serial/ batch number 26131006 and unique ID-number 204418
Fig.5: EP1258-00001 IP67 EtherCAT Box with batch number/ date code 22090101 and unique serial
number 158102
Fig.6: EP1908-0002 IP67 EtherCAT Safety Box with batch number/ date code 071201FF and unique serial
number 00346070
EL1202, EL1252, EL125411Version: 2.8
Foreword
Fig.7: EL2904 IP20 safety terminal with batch number/ date code 50110302 and unique serial number
00331701
Fig.8: ELM3604-0002 terminal with unique ID number (QR code) 100001051 and serial/ batch number
44160201
EL1202, EL1252, EL125412Version: 2.8
Foreword
1.5.1Beckhoff Identification Code (BIC)
The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify
the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is
based on the ANSI standard MH10.8.2-2016.
Fig.9: BIC as data matrix code (DMC, code scheme ECC200)
The BIC will be introduced step by step across all product groups.
Depending on the product, it can be found in the following places:
• on the packaging unit
• directly on the product (if space suffices)
• on the packaging unit and the product
The BIC is machine-readable and contains information that can also be used by the customer for handling
and product management.
Each piece of information can be uniquely identified using the so-called data identifier
(ANSIMH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum
length according to the table below. If the information is shorter, spaces are added to it. The data under
positions 1 to 4 are always available.
The following information is contained:
EL1202, EL1252, EL125413Version: 2.8
Foreword
Item
Type of
no.
information
1Beckhoff order
number
2Beckhoff Traceability
Number (BTN)
3Article descriptionBeckhoff article
4QuantityQuantity in packaging
5Batch numberOptional: Year and week
6ID/serial numberOptional: Present-day
7Variant numberOptional: Product variant
...
ExplanationData
Beckhoff order number 1P81P072222
Unique serial number,
see note below
description, e.g.
EL1008
unit, e.g. 1, 10, etc.
of production
serial number system,
e.g. with safety products
number on the basis of
standard products
Number of digits
identifier
S12SBTNk4p562d7
1K321KEL1809
Q6Q1
2P142P401503180016
51S1251S678294104
30P3230PF971, 2*K183
incl. data identifier
Example
Further types of information and data identifiers are used by Beckhoff and serve internal processes.
Structure of the BIC
Example of composite information from item 1 to 4 and 6. The data identifiers are marked in red for better
display:
BTN
An important component of the BIC is the Beckhoff Traceability Number (BTN, item no.2). The BTN is a
unique serial number consisting of eight characters that will replace all other serial number systems at
Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for
safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet
coded in the BIC.
NOTE
This information has been carefully prepared. However, the procedure described is constantly being further
developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in
this information.
EL1202, EL1252, EL125414Version: 2.8
2Product overview
2.1EL1202
2.1.1EL1202 - Introduction
Product overview
Fig.10: EL1202
2-channel digital input terminal 24 VDC, TON/T
The EL1202 digital input terminal acquires the binary control signals from the process level and transmits
them, in an electrically isolated form, to the higher-level automation unit. It is suitable for particularly fast
signals due to its very low input delay. For the EL1202-0100 variant, Distributed Clocks are activated, i.e. the
input data can be monitored synchronous with other data that are also linked to distributed clock terminals.
Therefore, the accuracy across the system is <<1µs. The EL1202 contains two channels, the signal state of
which is indicated via LEDs.
Quick links
• EtherCAT function principles
• LEDs and pin assignment [}40]
• Commissioning [}42]
OFF
1μs
EL1202, EL1252, EL125415Version: 2.8
Product overview
2.1.2EL1202 - Technical data
Technical dataEL1202-0000EL1202-0100
Digital inputs2
Nominal voltage of the inputs24VDC (-15%/+20%)
Signal voltage "0"-3V… +5V (based on EN 61131-2, type 3)
Signal voltage "1"+11V… +30V (based on EN 61131-2, type 3)
Input currenttyp. 3mA (based on EN 61131-2, type 3)
Input delay TON/T
OFF
Distributed Clocks (DC)noyes
Power supply for the electronicsvia the E-Bus
Current consumption from the E-bustyp. 110mA
Electrical isolation500V (E-bus/field voltage)
Bit width in the process image2 input bits
Configurationno address or configuration settings required
Weightapprox. 55g
Permissible ambient temperature range
during operation
Permissible ambient temperature range
during storage
Permissible relative humidity95%, no condensation
Dimensions (W x H x D)approx. 15mm x 100mm x 70mm (width aligned: 12mm)
Mounting [}26]
Vibration/shock resistanceconforms to EN 60068-2-6 / EN 60068-2-27,
EMC immunity/emissionconforms to EN 61000-6-2 / EN 61000-6-4
Protection classIP20
Installation positionvariable
ApprovalCE
< 1µs
0°C ... +55°C
-25°C ... +85°C
on 35mm mounting rail conforms to EN 60715
see also installation instructions for enhanced mechanical load
capacity [}30]
ATEX [}37]
cULus [}39]
EL1202, EL1252, EL125416Version: 2.8
2.2EL1252, EL1254
2.2.1EL1252, EL1254 - Introduction
Product overview
Fig.11: EL1252, EL1252-0050 and EL1254
2-/4-channel digital input terminal with time stamp
The EL1252 and EL1254 digital input terminals acquire the fast binary control signals from the process level
and transmits them, in an electrically isolated form, to the controller. The signals are furnished with a time
stamp that identifies the time of the last edge change with a resolution of 1ns. This technology enables
signals to be traced exactly over time and synchronized with the distributed clocks across the system. With
this technology, machine-wide parallel hardware wiring of digital inputs or encoder signals for
synchronization purposes is often no longer required. In conjunction with the EL2252 EtherCAT Terminal
(digital output terminal with time stamp), the EL1252/EL1254 enables responses with equidistant time
intervals, largely independent of the bus cycle time.
In the EL1252-0050 a variant is provided with a 5V input voltage (TTL level).
Quick links
• EtherCAT function principles
• LEDs and pin assignment [}41]
• Commissioning [}42]
EL1202, EL1252, EL125417Version: 2.8
Product overview
2.2.2EL1252, EL1254 - Technical data
Technical dataEL1252-0000EL1252-0050EL1254-0000
digital inputs24
Nominal voltage of the inputs24VDC (-15%/+20%)5VDC (-15%/+20%)24VDC (-15%/+20%)
Signal voltage "0"-3V … +5V
(based on EN
61131-2, type 3)
Signal voltage "1"+11V … +30V
(based on EN
61131-2, type 3)
Input currenttyp. 3mA
(based on EN
61131-2, type 3)
Input delay TON/T
Time stamp resolution1ns
Time stamp accuracy in the terminal10ns (+ input delay)
Distributed Clocks (DC) accuracy<< 1µs
Power supply for the electronicsvia the E-Bus
Current consumption from the E-bustyp. 110mAtyp. 90mAtyp. 110mA
Electrical isolation500V (E-bus/field voltage)
Bit width in the process image2 input bits + 2 time stamps4 input bits + 8 time
Configurationno address or configuration settings required
Weightapprox. 55g
Permissible ambient temperature range
during operation
Permissible ambient temperature range
during storage
Permissible relative humidity95%, no condensation
Dimensions (W x H x D)approx. 15mm x 100mm x 70mm (width aligned: 12mm)
Mounting [}26]
Vibration/shock resistanceconforms to EN 60068-2-6 / EN 60068-2-27,
EMC immunity/emissionconforms to EN 61000-6-2 / EN 61000-6-4
Protection classIP20
Installation positionvariable
ApprovalCE
OFF
< 1µs
-25°C ... +60°C
(extended temperature
range)
-40°C ... +85°C-25°C ... +85°C
on 35mm mounting rail conforms to EN 60715
see also installation instructions for enhanced mechanical load
capacity [}30]
ATEX [}38]
cULus [}39]
< 0.8V-3V … +5V
(based on EN
61131-2, type 3)
>2.4V+11V … +30V
(based on EN
61131-2, type 3)
typ. 50µAtyp. 3mA
(based on EN
61131-2, type 3)
stamps
0°C ... +55°C
CE
2.3Start
For commissioning:
• install the EL12xx as described in the Mounting and wiring [}26] section
• Configure the EL12xx in TwinCAT as described in section Commissioning [}42].
EL1202, EL1252, EL125418Version: 2.8
Basics communication
3Basics communication
3.1EtherCAT basics
Please refer to the EtherCAT System Documentation for the EtherCAT fieldbus basics.
3.2EtherCAT cabling – wire-bound
The cable length between two EtherCAT devices must not exceed 100 m. This results from the FastEthernet
technology, which, above all for reasons of signal attenuation over the length of the cable, allows a maximum
link length of 5 + 90 + 5 m if cables with appropriate properties are used. See also the Designrecommendations for the infrastructure for EtherCAT/Ethernet.
Cables and connectors
For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of
at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires
for signal transfer.
EtherCAT uses RJ45 plug connectors, for example. The pin assignment is compatible with the Ethernet
standard (ISO/IEC 8802-3).
PinColor of conductorSignalDescription
1yellowTD +Transmission Data +
2orangeTD -Transmission Data -
3whiteRD +Receiver Data +
6blueRD -Receiver Data -
Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between
EtherCAT devices from Beckhoff.
Recommended cables
Suitable cables for the connection of EtherCAT devices can be found on the Beckhoff website!
E-Bus supply
A bus coupler can supply the EL terminals added to it with the E-bus system voltage of 5V; a coupler is
thereby loadable up to 2A as a rule (see details in respective device documentation).
Information on how much current each EL terminal requires from the E-bus supply is available online and in
the catalogue. If the added terminals require more current than the coupler can supply, then power feed
terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.
The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager. A
shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be
placed before such a position.
EL1202, EL1252, EL125419Version: 2.8
Basics communication
Fig.12: System manager current calculation
NOTE
Malfunction possible!
The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!
3.3General notes for setting the watchdog
ELxxxx terminals are equipped with a safety feature (watchdog) that switches off the outputs after a
specifiable time e.g. in the event of an interruption of the process data traffic, depending on the device and
settings, e.g. in OFF state.
The EtherCAT slave controller (ESC) in the EL2xxx terminals features two watchdogs:
• SM watchdog (default: 100 ms)
• PDI watchdog (default: 100 ms)
SM watchdog (SyncManager Watchdog)
The SyncManager watchdog is reset after each successful EtherCAT process data communication with the
terminal. If no EtherCAT process data communication takes place with the terminal for longer than the set
and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the
outputs are set to FALSE. The OP state of the terminal is unaffected. The watchdog is only reset after a
successful EtherCAT process data access. Set the monitoring time as described below.
The SyncManager watchdog monitors correct and timely process data communication with the ESC from the
EtherCAT side.
PDI watchdog (Process Data Watchdog)
If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and
activated PDI watchdog time, this watchdog is triggered.
PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT
slave, for example. The PDI watchdog can be used to monitor this communication for failure.
The PDI watchdog monitors correct and timely process data communication with the ESC from the
application side.
The settings of the SM- and PDI-watchdog must be done for each slave separately in the TwinCAT System
Manager.
• each watchdog has its own timer setting, the outcome of this in summary with the multiplier is a
resulting time.
• Important: the multiplier/timer setting is only loaded into the slave at the start up, if the checkbox is
activated.
If the checkbox is not activated, nothing is downloaded and the ESC settings remain unchanged.
Multiplier
Multiplier
Both watchdogs receive their pulses from the local terminal cycle, divided by the watchdog multiplier:
1/25 MHz * (watchdog multiplier + 2) = 100µs (for default setting of 2498 for the multiplier)
The standard setting of 1000 for the SM watchdog corresponds to a release time of 100ms.
The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick.
The multiplier can be modified in order to adjust the watchdog time over a larger range.
EL1202, EL1252, EL125421Version: 2.8
Basics communication
Example “Set SM watchdog”
This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT
communication is interrupted, the SM watchdog is triggered after the set time and the outputs are erased.
This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The
default SM watchdog setting is 100ms. The setting range is 0...65535. Together with a multiplier with a
range of 1...65535 this covers a watchdog period between 0...~170 seconds.
Calculation
Multiplier = 2498 → watchdog base time = 1 / 25MHz * (2498 + 2) = 0.0001seconds = 100µs
SM watchdog = 10000 → 10000 * 100µs = 1second watchdog monitoring time
CAUTION
Undefined state possible!
The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals
from version -0016. In previous versions this operating mode should not be used.
CAUTION
Damage of devices and undefined state possible!
If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is
the deactivation of the watchdog! Set outputs are NOT set in a safe state, if the communication is interrupted.
3.4EtherCAT State Machine
The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the
state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be
sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.
A distinction is made between the following states:
• Init
• Pre-Operational
• Safe-Operational and
• Operational
• Boot
The regular state of each EtherCAT slave after bootup is the OP state.
EL1202, EL1252, EL125422Version: 2.8
Fig.14: States of the EtherCAT State Machine
Basics communication
Init
After switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible.
The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.
Pre-Operational (Pre-Op)
During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initialized
correctly.
In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCAT
master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU
channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO
assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters
that may differ from the default settings are also transferred.
Safe-Operational (Safe-Op)
During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync manager
channels for process data communication and, if required, the distributed clocks settings are correct. Before
it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DPRAM areas of the EtherCAT slave controller (ECSC).
In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs
in a safe state, while the input data are updated cyclically.
Outputs in SAFEOP state
The default set watchdog [}20] monitoring sets the outputs of the module in a safe state - depending on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the
watchdog monitoring in the module, the outputs can be switched or set also in the SAFEOP state.
Operational (Op)
Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid output
data.
In the Op state the slave copies the output data of the masters to its outputs. Process data and mailbox
communication is possible.
EL1202, EL1252, EL125423Version: 2.8
Basics communication
Boot
In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.
In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but no
other mailbox communication and no process data communication.
3.5CoE - Interface: notes
This device has no CoE.
Detailed information on the CoE interface can be found in the EtherCAT system documentation on the
Beckhoff website.
EL1202, EL1252, EL125424Version: 2.8
Basics communication
3.6Distributed Clock
The distributed clock represents a local clock in the EtherCAT slave controller (ESC) with the following
characteristics:
• Unit 1 ns
• Zero point 1.1.2000 00:00
• Size 64 bit (sufficient for the next 584 years; however, some EtherCAT slaves only offer 32-bit support,
i.e. the variable overflows after approx. 4.2 seconds)
• The EtherCAT master automatically synchronizes the local clock with the master clock in the EtherCAT
bus with a precision of < 100 ns.
For detailed information please refer to the EtherCAT system description.
EL1202, EL1252, EL125425Version: 2.8
Mounting and wiring
4Mounting and wiring
4.1Instructions for ESD protection
NOTE
Destruction of the devices by electrostatic discharge possible!
The devices contain components at risk from electrostatic discharge caused by improper handling.
• Please ensure you are electrostatically discharged and avoid touching the contacts of the device directly.
• Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.).
• Surroundings (working place, packaging and personnel) should by grounded probably, when handling
with the devices.
• Each assembly must be terminated at the right hand end with an EL9011 or EL9012 bus end cap, to ensure the protection class and ESD protection.
Fig.15: Spring contacts of the Beckhoff I/O components
4.2Installation on mounting rails
WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or
wiring of the bus terminals!
EL1202, EL1252, EL125426Version: 2.8
Assembly
Mounting and wiring
Fig.16: Attaching on mounting rail
The bus coupler and bus terminals are attached to commercially available 35mm mounting rails (DIN rails
according to EN60715) by applying slight pressure:
1. First attach the fieldbus coupler to the mounting rail.
2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks
onto the mounting rail.
If the terminals are clipped onto the mounting rail first and then pushed together without tongue and
groove, the connection will not be operational! When correctly assembled, no significant gap should
be visible between the housings.
Fixing of mounting rails
The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At
the installation, the locking mechanism of the components must not come into conflict with the fixing
bolts of the mounting rail. To mount the mounting rails with a height of 7.5mm under the terminals
and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).
EL1202, EL1252, EL125427Version: 2.8
Mounting and wiring
Disassembly
Fig.17: Disassembling of terminal
Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:
1. Pull the terminal by its orange-colored lugs approximately 1cm away from the mounting rail. In doing
so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of
the bus terminal block easily without excessive force.
2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved
housing surfaces and pull the terminal out of the bus terminal block.
Connections within a bus terminal block
The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by
joining the components:
• The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus
Terminal electronics.
• The power contacts deal with the supply for the field electronics and thus represent a supply rail within
the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24V)
or for higher voltages via power feed terminals.
Power Contacts
During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must
be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx
or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.
PE power contact
The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first
when plugging together, and can ground short-circuit currents of up to 125A.
EL1202, EL1252, EL125428Version: 2.8
Fig.18: Power contact on left side
Mounting and wiring
NOTE
Possible damage of the device
Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the
mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g.
disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230V).
For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at
least 10mm from the group of terminals.
WARNING
Risk of electric shock!
The PE power contact must not be used for other potentials!
EL1202, EL1252, EL125429Version: 2.8
Mounting and wiring
4.3Installation instructions for enhanced mechanical load
capacity
WARNING
Risk of injury through electric shock and damage to the device!
Bring the Bus Terminal system into a safe, de-energized state before starting mounting, disassembly or
wiring of the Bus Terminals!
Additional checks
The terminals have undergone the following additional tests:
Verification Explanation
Vibration10 frequency runs in 3 axes
6 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
For terminals with enhanced mechanical load capacity, the following additional installation instructions apply:
• The enhanced mechanical load capacity is valid for all permissible installation positions
• Use a mounting rail according to EN 60715 TH35-15
• Fix the terminal segment on both sides of the mounting rail with a mechanical fixture, e.g. an earth
terminal or reinforced end clamp
• The maximum total extension of the terminal segment (without coupler) is:
64 terminals (12mm mounting with) or 32 terminals (24mm mounting with)
• Avoid deformation, twisting, crushing and bending of the mounting rail during edging and installation of
the rail
• The mounting points of the mounting rail must be set at 5 cm intervals
• Use countersunk head screws to fasten the mounting rail
• The free length between the strain relief and the wire connection should be kept as short as possible. A
distance of approx. 10cm should be maintained to the cable duct.
4.4Connection
4.4.1Connection system
WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or
wiring of the bus terminals!
Overview
The Bus Terminal system offers different connection options for optimum adaptation to the respective
application:
• The terminals of ELxxxx and KLxxxx series with standard wiring include electronics and connection
level in a single enclosure.
EL1202, EL1252, EL125430Version: 2.8
Loading...
+ 129 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.